그레고리-라이프니츠 급수

수학노트
이동: 둘러보기, 검색

개요

  • 1680년경 발견된 파이의 무한급수 표현

\[1 \,-\, \frac{1}{3} \,+\, \frac{1}{5} \,-\, \frac{1}{7} \,+\, \frac{1}{9} \,-\, \cdots \;=\; \frac{\pi}{4}\]

 

그레고리-라이프니츠 급수를 이용한 파이값의 계산

그레고리-라이프니츠 급수의 처음 5000개의 항을 더했을 때 나타나는 현상은 다음과 같다 \[4\sum_{k=1}^{5000}\frac{(-1)^{k-1}}{2k-1}=3.141392653591793238362643395479500114198179\cdots\]

실제 원주율과 비교하면, 다음과 같은 현상을 발견할 수 있다 :

3.141392653591793238362643395479500114198179… (위의 급수)

3.141592653589793238462643383279502884197169… (원래 파이값)

이제 왜 이런 현상이 일어났는가 설명하기 위해 오일러수라는 것을 정의하자. 이 수는 시컨트 함수의 맥클로린 급수의 계수를 통하여 다음과 같이 정의된다. \[\sec x = 1 + \frac {x^2} {2} + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \cdots=\sum_{n=0}^\infty \frac{(-1)^n E_{2n} x^{2n}}{(2n)!}\]

처음 몇 개의 오일러 수는 다음과 같다.

$$ \begin{array}{c|c} n & E_n \\ \hline 0 & 1 \\ 2 & -1 \\ 4 & 5 \\ 6 & -61 \\ 8 & 1385 \\ 10 & -50521 \\ 12 & 2702765 \end{array} $$  

이제 다시 본론으로 돌아가서, 라이프니츠 급수의 오차항에 대해 알아보자. 오일러수를 사용하면, 이 급수와 수렴값의 차이를 다음과 같이 표현할 수 있다. \[\pi-4\sum_{k=1}^{N/2}\frac{(-1)^{k-1}}{2k-1 }\sim \sum_{m=0}^{\infty}\frac{2E_{2m}}{N^{2m+1}}=\frac{2}{N}-\frac{2}{N^3}+\frac{10}{N^5}-\frac{122}{N^7}+\frac{2770}{N^9}-\frac{101042}{N^{11}}+\cdots\]


수학적으로 엄밀하게 말하자면 오른쪽의 급수는 수렴하지 않고, 다음과 같은 정도로 그 크기를 표현할 수 있다.

\[4\sum_{k=n+1}^{\infty}\frac{(-1)^{k-1}}{2k-1 }=(-1)^n\sum_{k=0}^{M}\frac{2E_{2k}}{(2n)^{2k+1}}+R(M)\]

여기서 \(|R(M)| \leq \frac{2|E_{2k}|}{(2n)^{2M+1}}\)

 

따라서 \(N=10^{l}\) 일때,  (4배한) 라이프니츠급수와 파이의 자릿수는 소수점 \(l\)번째(또는 그 앞) 자리에서 처음 다르게 나타난다.

오차항에 대해서는 \(2E_{2(M+1)}\)과 \(10^{2l}\) 의 자릿수가 엇비슷해지는 \(M\)을 찾았을때 \(k=M\) 까지 오차항을 계산하면 파이의 자릿수를 어느 정도 얻을 수 있겠다.

라이프니츠 급수로도 오일러수를 통한 보정으로 파이의 자릿수를 소수점아래 \((2M+1)l\) 자리까지는 얻을 수 있다는 얘기다.

 

이렇게 하고 끝을 맺으면, 뭔가 얻은거 같은 느낌이 없을 가능성이 높으므로 쉬운 예를 통해서 이해해보자.

 

\(N=10^2\) 인 경우, \(2E_6\)가 네자리 수이므로, \(M=2\) 로 두면 위의 말대로, 라이프니츠 급수를 통하여 파이의 소수점 10자리 정도의 전개정도는 얻을 수 있다. \[4\sum_{k=1}^{50}\frac{(-1)^{k-1}}{2k-1}=3.12159465259101047851\cdots\]  

0.12345678901234567890123456789012345678901234567890123456789

3.14159265358979323846… (원래 파이값)

3.12159465259101047851… (위의 급수)

 

자릿수가 다른 곳의 차이를 보면, 오일러수인 2, -2, 10, -122가 나타나는 것을 볼 수 있다.

 

\(N=10^3\) 인 경우, \(2E_{10}\)이 여섯자리 수이므로, \(M=4\) 로 두면 위의 말대로, 라이프니츠 급수를 통하여 파이의 소수점 27자리 정도의 전개정도는 얻을 수 있다.


\[4\sum_{k=1}^{500}\frac{(-1)^{k-1}}{2k-1}=3.13959265558978323858464061338053947906585258315983\cdots\]

0.12345678901234567890123456789012345678901234567890123456789

3.14159265358979323846264338327950288419716939937510582

3.13959265558978323858464061338053947906585258315983

 

자릿수가 다른 곳의 차이를 보면, 오일러수 2, -2, 10, -122, 2770가 나타난다.

 

 

\(N=10^4\) 인 경우, \(E_{12}\)가 일곱자리 수이므로, \(M=5\) 로 두면 위의 말대로, 라이프니츠 급수를 통하여 파이의 소수점 44자리 정도의 전개를 얻을 수 있다.

\[4\sum_{k=1}^{5000}\frac{(-1)^{k-1}}{2k-1}=3.141392653591793238362643395479500114198179\cdots\]

 

0.12345678901234567890123456789012345678901234567890123456789

3.14159265358979323846264338327950288419716939937510582

3.1413926535917932383626433954795001141981798188345532196965187625458916006334194979629989247706731687

 

자릿수가 다른 곳의 차이를 보면, 2, -2, 10, -122, 2770, -101042가 나타난다. 

 

메모

 

관련논문