"라마누잔과 파이"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
17번째 줄: 17번째 줄:
 
<h5>정의</h5>
 
<h5>정의</h5>
  
* [[타원적분(통합됨)|타원적분]] , [[자코비 세타함수]], [[라마누잔의 class invariants]] 항목 참조<br><math>q=e^{2\pi i \tau}</math><br><math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math><br><math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty \exp(\pi i n^2\tau)</math><br>
+
* [[타원적분(통합됨)|타원적분]] , [[자코비 세타함수]], [[라마누잔의 class invariants]] 항목 참조<br><math>q=e^{2\pi i \tau}</math><br><math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math><br><math>\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}</math><br>
 
 
 
 
  
 
<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math>
 
<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math>
45번째 줄: 43번째 줄:
 
<h5> </h5>
 
<h5> </h5>
  
* '''[BB1998]  '''(5.5.16)<br><math>\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}</math><br><math>x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}</math><br><math>d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})</math><br>
+
* '''[BB1998]  '''
 +
*  prop 5.6<br><math>K_s(h) = \frac{\pi}{2}\,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)</math><br><math>K_s(h) = \frac{\pi}{2}\,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)</math><br>  <br>  <br>
 +
* '''<br>'''
 +
(5.5.16)<br><math>\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}</math><br><math>x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}</math><br><math>d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})</math><br>
  
 
 
 
 

2009년 8월 15일 (토) 01:56 판

간단한 소개
  • 라마누잔은 1914년에 다음과 같은 공식을 발표 [RAM1914]
  • \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
  • Chudnovsky 형제  [CHU88]

\(\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\)

 

 

정의

\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)

\(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}}d\theta}{\)

\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)

\(K'(k) = K(k')\)

\(E'(k) = E(k')\)

  • 위의 함수들을 이용하여, 양수 \(r\)에 대하여 다음을 정의

\(\lambda^{*}(r):=k(i\sqrt{r})\)

\(\alpha(r):=\frac{E'}{K}-\frac{\pi}{4K^2}\)

 

 
  • [BB1998]  
  • prop 5.6
    \(K_s(h) = \frac{\pi}{2}\,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)\)
    \(K_s(h) = \frac{\pi}{2}\,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)\)
     
     

  • (5.5.16)
    \(\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}\)
    \(x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}\)
    \(d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})\)

 

  • \(N=58\) 일 때
    \(x_{58}=\frac{1}{99^2}=\frac{1}{9801}\), \(d_n(58)=(1103+26390n)2\sqrt 2\) 이므로 다음을 얻는다
    \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
     

 

 

라마누잔의 class invariants

 

 

재미있는 사실
  • \(e^{\sqrt{58}\pi}=24591257751.999999822\cdots\)

 

 


역사
  • Around 1910, the Indian mathematician Srinivasa Ramanujan discovered the formula
\(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
  • William Gosper used this series in 1985 to compute the first 17 million digits of \(\pi\).

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

참고할만한 자료

[1]

 

관련기사

 

 

블로그