"라마누잔과 파이"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/2519130">원주율 파이</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[라마누잔과 파이]]
 +
 +
 
 +
 +
 
 +
 
<h5>간단한 소개</h5>
 
<h5>간단한 소개</h5>
  
135번째 줄: 143번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 +
 +
* http://en.wikipedia.org/wiki/Pi
 +
* http://www.wolframalpha.com/input/?i=pi
 +
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">참고할만한 자료</h5>
+
 
  
* http://ko.wikipedia.org/wiki/
+
 
* <br>
 
  
 
 
 
 
158번째 줄: 169번째 줄:
 
* [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4PW5XTP-8&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=07a10c67e340156fe912e39d39c0330a Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions]<br>
 
* [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4PW5XTP-8&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=07a10c67e340156fe912e39d39c0330a Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions]<br>
 
** Nayandeep Deka Baruaha, and Bruce C. Berndt, Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
 
** Nayandeep Deka Baruaha, and Bruce C. Berndt, Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
* [http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ramapi.html A WZ Proof of Ramanujan's Formula for Pi ]<br>
+
* [http://www.math.rutgers.edu/%7Ezeilberg/mamarim/mamarimhtml/ramapi.html A WZ Proof of Ramanujan's Formula for Pi ]<br>
 
** Shalosh B. Ekhad and Doron Zeilberger,  `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
 
** Shalosh B. Ekhad and Doron Zeilberger,  `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
 
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P62.pdf Class number three Ramanujan type series for 1/pi]<br>
 
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P62.pdf Class number three Ramanujan type series for 1/pi]<br>
 
** J. M. Borwein ,P. B. Borwein, Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993)
 
** J. M. Borwein ,P. B. Borwein, Journal of Computational and Applied Mathematics (Vol.46 NO.1 / 1993)
 
* [http://www.jstor.org/stable/2325206 Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi]<br>
 
* [http://www.jstor.org/stable/2325206 Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi]<br>
** J. M. Borwein, P. B. Borwein and D. H. Bailey, <cite style="LINE-HEIGHT: 2em;">The American Mathematical Monthly</cite>, Vol. 96, No. 3 (Mar., 1989), pp. 201-219
+
** J. M. Borwein, P. B. Borwein and D. H. Bailey, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 96, No. 3 (Mar., 1989), pp. 201-219
 
* '''[CHU88]'''Approximations and complex multiplication according to Ramanujan<br>
 
* '''[CHU88]'''Approximations and complex multiplication according to Ramanujan<br>
 
** D. V. Chudnovsky and G. V. Chudnovsky, Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
 
** D. V. Chudnovsky and G. V. Chudnovsky, Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
169번째 줄: 180번째 줄:
 
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P35.pdf Explicit Ramanujan-type approximations to pi of high order ]<br>
 
* [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P35.pdf Explicit Ramanujan-type approximations to pi of high order ]<br>
 
** J. M. Borwein, P. B. Borwein, 1987
 
** J. M. Borwein, P. B. Borwein, 1987
* '''[RAM1914]'''[http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper6/page1.htm Modular equations and approximations to Pi]<br>
+
* '''[RAM1914]'''[http://www.imsc.res.in/%7Erao/ramanujan/CamUnivCpapers/Cpaper6/page1.htm Modular equations and approximations to Pi]<br>
 
** S. Ramanujan, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
 
** S. Ramanujan, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
  
197번째 줄: 208번째 줄:
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
<br>
 

2010년 3월 15일 (월) 06:56 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개
  • 라마누잔은 1914년에 다음과 같은 공식을 발표 [RAM1914]
    \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
  • Chudnovsky 형제  [CHU88]

\(\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\)

 

 

정의와 미리 알아야 할 것들

\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)

\(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}}d\theta}{\)

\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)

\(K'(k) = K(k')\)

\(E'(k) = E(k')\)

  • 위의 함수들을 이용하여, 양수 \(r\)에 대하여 다음을 정의

\(\lambda^{*}(r):=k(i\sqrt{r})\)

\(\alpha(r):=\frac{E'}{K}-\frac{\pi}{4K^2}\)

 

 

singular value function 
  • 타원적분이 만족시키는 르장드르 항등식
     \(E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\) (AGM과 파이값의 계산)
  • 타원적분의 성질 
    \(K'(\lambda^{*}(r))=\sqrt{r}K(\lambda^{*}(r))\)
  • 위의 둘을 사용하여 다음을 얻는다
    \(\alpha(r)=\frac{\pi}{4K^2}-\sqrt{r}(\frac{E}{K}-1)\)
  • 여기에 타원적분이 만족시키는 미분방정식
    \(\frac{dK}{dk}=\frac{E-k'^2K}{kk'^2}\)
    을 사용하면
    \(\alpha(r)=\frac{1}{\pi}(\frac{\pi}{2K})^2-\sqrt{r}(kk'^2\frac{\.K}{K}-k^2)\)
    를 얻게 되고, 이를 다시 쓰면
    \(\frac{1}{\pi}=\sqrt{N}k_Nk'_N^2\frac{4K\.K}{\pi^2}+[\alpha(N)-\sqrt{N}k^2_N]\frac{4K^2}{\pi^2}\)

 

  • \([\frac{2}{\pi}K(k)]^2 =m(k)F(y(k))\) 꼴로 쓰여질때, 양변을 미분하면 다음을 얻는다
    \(\frac{4K\.K}{\pi^2}=\frac{1}{2}\.mF+\frac{1}{2}m\.y\.F(y)\)
  • 초기하급수를 다음과 같이 쓰면
    \(F(y)=\sum_{n=0}^{\infty}a_ny^n\)
  • \(\frac{1}{\pi}=\sum_{n=0}^\infty a_n[\frac{\sqrt{N}}{2}k{k'}^2\.m+[\alpha(N)-\sqrt{N}k^2_N]m+\frac{n\sqrt{N}}{2}m\frac{\.y}{y}kk'^2]y^n\)

 

 

라마누잔 파이 공식의 유도
  • 아래의 prop, thm 번호는 [BB1998] 참조
  • 초기하급수(Hypergeometric series) 항목의 Clausen 항등식이 중요하게 사용됨
  • prop 5.6
    \(\frac{2}{\pi}K_s(h) = \,_2F_1(\frac{1}{4}-\frac{s}{2},\frac{1}{4}+\frac{s}{2};1;(2hh')^2)\)
    \([\frac{2}{\pi}K_s(h)]^2 = \,_2F_1(\frac{1}{2}-s,\frac{1}{2}+s,\frac{1}{2};1,1;(2hh')^2)\)
  • prop 5.7
    \(K_{1/4}(h)=(1+k^2)^{1/2}K(k)\) if \(2hh'=[\frac{g^{12}+g^{-12}}{2}]^{-1}\)
  • Thm 5.6
    \(\frac{2}{\pi}K(k) =(1+k^2)^{-1/2} \,_2F_1(\frac{1}{8},\frac{3}{8};1;[\frac{g^{12}+g^{-12}}{2}}]^{-2})\)
  • Thm 5.7
    \([\frac{2}{\pi}K(k)]^2 =(1+k^2)^{-1} \,_3F_2(\frac{1}{4},\frac{3}{4},\frac{1}{2};1,1;[\frac{g^{12}+g^{-12}}{2}}]^{-2})\)
  • (5.5.16)
    \(\frac{1}{\pi}=\sum_{n=0}^{\infty}\frac{(\frac{1}{4})_n(\frac{1}{2})_n(\frac{3}{4})_n}{(n!)^3}d_n(N)x_N^{2n+1}\)
    \(x_N=(\frac{g_N^{12}+g_N^{-12}}{2})^{-1}\)
    \(d_n(N)=[\frac{\alpha(N)x_N^{-1}}{1+k_N^2}-\frac{\sqrt{N}}{4}g_N^{-12}]+n\sqrt N(\frac{g_N^{12}-g_N^{-12}}{2})\)

 

  • \(N=58\) 일 때
    \(x_{58}=\frac{1}{99^2}=\frac{1}{9801}\), \(d_n(58)=(1103+26390n)2\sqrt 2\) 이므로 다음을 얻는다
    \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
     

 

 

라마누잔의 class invariants

 

 

재미있는 사실
  • \(e^{\sqrt{58}\pi}=24591257751.999999822\cdots\)
  •  \(\frac{6}{5} \phi^2 = \pi\)

 


역사
  • Around 1910, the Indian mathematician Srinivasa Ramanujan discovered the formula
\(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
  • William Gosper used this series in 1985 to compute the first 17 million digits of \(\pi\).

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

사전 형태의 자료

 

 

 

참고할만한 자료

[1]

 

 

관련기사

 

 

블로그