"바이어슈트라스 타원함수 ℘"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
91번째 줄: 91번째 줄:
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* [[타원 모듈라 λ-함수]]
+
* [[아이젠슈타인 급수(Eisenstein series)]]
 
+
* [[바이어슈트라스 시그마 함수]]
 
 
 
==수학용어번역==
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
   
 
   
110번째 줄: 100번째 줄:
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 

2013년 6월 16일 (일) 01:44 판

개요

정의

  • 2차원격자를 이루는 두 복소수 \(\omega_1,\omega_2\)에 대하여, \[\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\]\[\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\]
  • 이중주기를 갖는 함수\[\wp(z+\omega_1)=\wp(z+\omega_2)=\wp(z)\]




℘의 로랑급수

  • 원점에서의 로랑급수는 다음과 같이 주어짐.\[\wp(z)=z^{-2}+\frac{g_2}{20}z^2+\frac{g_3}{28}z^4+\frac{g_2^2}{1200}z^6+O(z^8)\]
    여기서 \(g_2= 60\sum{}' \omega_{m,n}^{-4}\), \(g_3=140\sum{}' \omega_{m,n}^{-6}\)


(증명)

\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) \) 를 정의하자.

\(\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2}\) 이므로 \(\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)\) 의 로랑급수를 구한 뒤, 미분을 하면 된다.

\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)\)

\(=\frac{1}{z}+\sum_{\omega \in \Omega}(-\frac{z^2}{\omega^3}-\frac{z^3}{\omega^4}-\frac{z^4}{\omega^5}-\cdots)=\frac{1}{z}-G_3z^2-G_4z^3-\cdots=\frac{1}{z}-\sum_{n=2}^{\infty}G_{2n}z^{2n-1}\). 여기서 \(G_{2n}=\sum_{\omega\in \Omega} \frac{1}{\omega^{2n}}\).

따라서 \(\wp(z)=\frac{1}{z^2}-\sum_{n=2}^{\infty}(2n-1)G_{2n}z^{2n-2}\).


미분방정식

  • 바이어슈트라스 타원함수는 다음 미분방정식을 만족시킴\[\wp'(z)^2=4\wp(z)^3-g_2\wp(z)-g_3\]



도함수의 해

  • \(\wp(z)\)는 우함수, \(\wp'(z)\)는 기함수임을 이용하면, \(\wp'(\frac{\omega}{2})=0\) 임을 증명할 수 있다
  • \(e_1:=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)\)\[e_2:=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)\]\[e_3:=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)\]
  • 다음 타원곡선의 branch points로 이해할 수 있음\[y^2=4x^3-g_2x-g_3=4(x-e_1)(x-e_2)(x-e_3)\]



덧셈공식

\(\wp(z+w)=-\wp(z)-\wp(w)+\frac{1}{4}(\frac{\wp'(z)-\wp'(w)}{\wp(z)-\wp(w)})^2\)



역사



메모




관련된 항목들



사전 형태의 자료