"부분합과 급수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
21번째 줄: 21번째 줄:
 
*  예
 
*  예
 
** [[거듭제곱의 합을 구하는 공식]] 참조
 
** [[거듭제곱의 합을 구하는 공식]] 참조
*  망원급수(telescopic sum) : 교육 과정 외이나 알아 두면 굉장히 도움이 됨. (외우지 말고 꼴을 익혀 주세요)<br>  <br><br>
+
*  망원급수(telescopic sum) : 교육 과정 외이나 알아 두면 굉장히 도움이 됨. (외우지 말고 꼴을 익혀 주세요)  
**  위의 꼴로 수열을 변형시키면 쉽게 부분합을 구할 수 있다.<br>
+
**  위의 꼴로 수열을 변형시키면 쉽게 부분합을 구할 수 있다.
 
*** ex)  
 
*** ex)  
***  ex)<br> <br>
+
***  ex) 
  
 
 
 
 
56번째 줄: 56번째 줄:
 
<math>1+2\sum_{n=1}^{\infty} e^{-n\pi}=\frac{1}{1-e^{-\pi}}=\frac{e^{\pi}+1}{e^{\pi}-1}</math>
 
<math>1+2\sum_{n=1}^{\infty} e^{-n\pi}=\frac{1}{1-e^{-\pi}}=\frac{e^{\pi}+1}{e^{\pi}-1}</math>
  
* [[코탄젠트]] 함수의 푸리에전개:<math>f(2\tau):=i \cot \pi\tau= 1+2\sum_{n=1}^{\infty}e^{2\pi i n \tau}</math>:<math>\coth x = \frac{\cosh x}{\sinh x} = \frac {\frac {e^x + e^{-x}} {2}} {\frac {e^x - e^{-x}} {2}} = \frac {e^x + e^{-x}} {e^x - e^{-x}} = \frac{e^{2x} + 1} {e^{2x} - 1} = i  \cot ix \</math>:<math>f(i)=i \cot i\frac{\pi}{2} = \coth \frac{\pi}{2} = \frac{e^{\pi} + 1} {e^{\pi} - 1}</math><br>
+
* [[코탄젠트]] 함수의 푸리에전개:<math>f(2\tau):=i \cot \pi\tau= 1+2\sum_{n=1}^{\infty}e^{2\pi i n \tau}</math>:<math>\coth x = \frac{\cosh x}{\sinh x} = \frac {\frac {e^x + e^{-x}} {2}} {\frac {e^x - e^{-x}} {2}} = \frac {e^x + e^{-x}} {e^x - e^{-x}} = \frac{e^{2x} + 1} {e^{2x} - 1} = i  \cot ix \</math>:<math>f(i)=i \cot i\frac{\pi}{2} = \coth \frac{\pi}{2} = \frac{e^{\pi} + 1} {e^{\pi} - 1}</math>
  
 
 
 
 
97번째 줄: 97번째 줄:
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
111번째 줄: 111번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
133번째 줄: 133번째 줄:
 
==관련기사==
 
==관련기사==
  
*  네이버 뉴스 검색 (키워드 수정)<br>
+
*  네이버 뉴스 검색 (키워드 수정)
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EA%B8%B0%ED%95%98%EA%B8%89%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=기하급수]
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EA%B8%B0%ED%95%98%EA%B8%89%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=기하급수]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=

2020년 11월 12일 (목) 22:47 판

개요

부분합 : 수열 에서 새로운 수열 을 로 해서 만들어 낼 수 있다. 이 수열 을 의 <부분합> 이라고 부른다.

즉, :

  • , 일 때 이므로, 부분합의 일반항을 알면 수열의 일반항을 구할 수 있다.

 

  • : 등차수열의 부분합
  • : 등비수열의 부분합

 

  • 에 대한 다항식으로 이루어진 수열의 부분합은 구할 수 있다.
  •  

 

  • 망원급수(telescopic sum) : 교육 과정 외이나 알아 두면 굉장히 도움이 됨. (외우지 말고 꼴을 익혀 주세요)  
    • 위의 꼴로 수열을 변형시키면 쉽게 부분합을 구할 수 있다.
      • ex)
      • ex) 

 

 

급수 : 이 무한히 커질 때 부분합 이 어떤 수에 무한히 가까워질 때, 그것을 <급수> 라고 한다. 즉,

  이면 의 급수의 값은 이다.

 

 

등비급수

 

 

 

등비급수의 예

\(\sum_{n=0}^{\infty} e^{-n\pi}=\frac{1}{1-e^{-\pi}}=\frac{e^{\pi}}{e^{\pi}-1}\)

 

이를 이용하면, 

\(1+2\sum_{n=1}^{\infty} e^{-n\pi}=\frac{1}{1-e^{-\pi}}=\frac{e^{\pi}+1}{e^{\pi}-1}\)

  • 코탄젠트 함수의 푸리에전개\[f(2\tau):=i \cot \pi\tau= 1+2\sum_{n=1}^{\infty}e^{2\pi i n \tau}\]\[\coth x = \frac{\cosh x}{\sinh x} = \frac {\frac {e^x + e^{-x}} {2}} {\frac {e^x - e^{-x}} {2}} = \frac {e^x + e^{-x}} {e^x - e^{-x}} = \frac{e^{2x} + 1} {e^{2x} - 1} = i \cot ix \\]\[f(i)=i \cot i\frac{\pi}{2} = \coth \frac{\pi}{2} = \frac{e^{\pi} + 1} {e^{\pi} - 1}\]

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 


 

 

관련기사

 

 

블로그