이차곡선과 회전변환

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 일반적인 형태의 이차곡선 \(ax^2+bxy+cy^2+dx+ey+f=0,(b\neq 0)\) 이 주어진 경우, 회전변환을 이용하여 \(xy\) 항을 없앨 수 있다
  • 대칭행렬의 대각화 로 이해할 수 있다



이차형식과 회전변환

이차형식 \(a x^2+b x y+c y^2\)에 \(x\to X \cos (\theta )-Y \sin (\theta ),y\to X \sin (\theta )+Y \cos (\theta )\) 를 대입하면,

이차형식 \(A X^2+B X Y+C Y^2\) 를 얻으며, 이 때의 계수는

\(A=\frac{1}{2} (a \cos (2 \theta )+a+b \sin (2 \theta )-c \cos (2 \theta )+c)\)

\(B=-a \sin (2 \theta )+b \cos (2 \theta )+c \sin (2 \theta )\)

\(C=\frac{1}{2} (a (-\cos (2 \theta ))+a-b \sin (2 \theta )+c \cos (2 \theta )+c)\)

이다.


\(\cot (2 \theta )=\frac{a-c}{b}\) 이 되도록 하는 \(\theta\)를 찾으면, \(B=0\)이 된다. (\(b=0\) 인 경우는 물론 이러한 작업이 필요하지 않다)



9431928-parabola2.gif

  • \(a=c=1\) 이므로, \(\theta\)에 대한 다음 방정식을 얻는다\[\cot (2 \theta )=\frac{a-c}{b}=0\]
  • \(\theta=\pi/4\) 는 이 방정식의 해이므로, \(x\to X \cos (\theta )-Y \sin (\theta ),y\to X \sin (\theta )+Y \cos (\theta )\) 즉\[x\to \frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}},y\to \frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}\] 를 이용할 수 있다
  • \(10 \sqrt{2} X=Y^2+50\) 를 얻는다



메모



관련된 항목들



매스매티카 파일 및 계산 리소스