"전자기 텐서와 맥스웰 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
* [[맥스웰 방정식]]을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다
 
* [[맥스웰 방정식]]을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다
  
 
+
  
  
40번째 줄: 40번째 줄:
 
* 비앙키 항등식
 
* 비앙키 항등식
 
* 풀어쓰면 다음의 방정식을 얻는다
 
* 풀어쓰면 다음의 방정식을 얻는다
$$
+
:<math>
 
\begin{array}{l}
 
\begin{array}{l}
 
  \frac{\partial F_{1\ 2}}{\partial x^0}+\frac{\partial F_{2\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^2}=-\frac{\frac{\partial }{\partial t}B_z-\frac{\partial }{\partial y}E_x+\frac{\partial }{\partial x}E_y}{c}=0 \\
 
  \frac{\partial F_{1\ 2}}{\partial x^0}+\frac{\partial F_{2\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^2}=-\frac{\frac{\partial }{\partial t}B_z-\frac{\partial }{\partial y}E_x+\frac{\partial }{\partial x}E_y}{c}=0 \\
47번째 줄: 47번째 줄:
 
  \frac{\partial F_{2\ 3}}{\partial x^1}+\frac{\partial F_{3\ 1}}{\partial x^2}+\frac{\partial F_{1\ 2}}{\partial x^3}=-\frac{\partial }{\partial x}B_x-\frac{\partial }{\partial y}B_y-\frac{\partial }{\partial z}B_z=0
 
  \frac{\partial F_{2\ 3}}{\partial x^1}+\frac{\partial F_{3\ 1}}{\partial x^2}+\frac{\partial F_{1\ 2}}{\partial x^3}=-\frac{\partial }{\partial x}B_x-\frac{\partial }{\partial y}B_y-\frac{\partial }{\partial z}B_z=0
 
\end{array}
 
\end{array}
$$
+
</math>
 
* 처음의 세 방정식은 패러데이의 법칙에 대한 각 성분에 해당한다
 
* 처음의 세 방정식은 패러데이의 법칙에 대한 각 성분에 해당한다
 
:<math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>
 
:<math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>
61번째 줄: 61번째 줄:
 
* <math>\partial_{\mu}F^{\mu 1}=\mu_0 j^{1},\partial_{\mu}F^{\mu 2}=\mu_0 j^{2},\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}</math>은 앙페르 법칙의 각 성분
 
* <math>\partial_{\mu}F^{\mu 1}=\mu_0 j^{1},\partial_{\mu}F^{\mu 2}=\mu_0 j^{2},\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}</math>은 앙페르 법칙의 각 성분
 
:<math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>
 
:<math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>
 
+
  
  
69번째 줄: 69번째 줄:
 
   
 
   
  
 
+
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxTi1yem4wNy1IRUk/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxTi1yem4wNy1IRUk/edit
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/전자기_텐서
 
* http://ko.wikipedia.org/wiki/전자기_텐서
81번째 줄: 81번째 줄:
 
* http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
 
* http://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
 
[[분류:수리물리학]]
 
[[분류:수리물리학]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2462410 Q2462410]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'four'}, {'OP': '*'}, {'LEMMA': 'gradient'}]

2021년 2월 17일 (수) 05:58 기준 최신판

개요

  • 맥스웰 방정식을 전자기 텐서가 만족시키는 두 개의 방정식으로 표현할 수 있다



전자기 텐서

기호

정의

  • 포벡터 포텐셜
    • \(A_{\alpha} = \left(\phi/c, -\mathbf{A} \right)=(\phi/c,-A_{x},-A_{y},-A_{z})\), \(\alpha=0,1,2,3\)
  • 전자기 텐서의 성분을 \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\) 로 정의한다
    • \(F_{01}=\partial_{0} A_{1} - \partial_{1} A_{0}=-\frac{1}{c}\frac{\partial A_{x}}{\partial t} -\frac{1}{c}\frac{\partial \phi}{\partial x}=\frac{E_{x}}{c}\)
    • \(F_{12}=\partial_{1} A_{2} - \partial_{2} A_{1}=-\frac{\partial A_{y}}{\partial x}+\frac{\partial A_{x}}{\partial y}=-B_{z}\)
  • 전자기 텐서의 성분을 다음과 같은 행렬로 표현하자 \[\left( \begin{array}{cccc} F_{00} & F_{01} & F_{02} & F_{03} \\ F_{10} & F_{11} & F_{12} & F_{13} \\ F_{20} & F_{21} & F_{22} & F_{23} \\ F_{30} & F_{31} & F_{32} & F_{33} \end{array} \right)\]
  • 전자기 텐서의 성분은 다음과 같다

\[F_{\mu\nu} =\left( \begin{array}{cccc} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ -\frac{E_x}{c} & 0 & -B_z & B_y \\ -\frac{E_y}{c} & B_z & 0 & -B_x \\ -\frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)\]\[F^{\mu\nu} =\left( \begin{array}{cccc} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c} \\ \frac{E_x}{c} & 0 & -B_z & B_y \\ \frac{E_y}{c} & B_z & 0 & -B_x \\ \frac{E_z}{c} & -B_y & B_x & 0 \end{array} \right)\]


전자기 텐서와 전자기 포텐셜

\[\left( \begin{array}{cccc} 0 & {E_x} & {E_y} & {E_z} \\ -{E_x} & 0 & -{B_z} & {B_y} \\ -{E_y} & {B_z} & 0 & -{B_x} \\ -{E_z} & -{B_y} & {B_x} & 0 \end{array} \right) =\left( \begin{array}{cccc} 0 & -\frac{\partial {A_x}}{\partial t}-\frac{\partial \phi }{\partial x} & -\frac{\partial {A_y}}{\partial t}-\frac{\partial \phi }{\partial y} & -\frac{\partial {A_z}}{\partial t}-\frac{\partial \phi }{\partial z} \\ \frac{\partial {A_x}}{\partial t}+\frac{\partial \phi }{\partial x} & 0 & \frac{\partial {A_x}}{\partial y}-\frac{\partial {A_y}}{\partial x} & \frac{\partial {A_x}}{\partial z}-\frac{\partial {A_z}}{\partial x} \\ \frac{\partial {A_y}}{\partial t}+\frac{\partial \phi }{\partial y} & \frac{\partial {A_y}}{\partial x}-\frac{\partial {A_x}}{\partial y} & 0 & \frac{\partial {A_y}}{\partial z}-\frac{\partial {A_z}}{\partial y} \\ \frac{\partial {A_z}}{\partial t}+\frac{\partial \phi }{\partial z} & \frac{\partial {A_z}}{\partial x}-\frac{\partial {A_x}}{\partial z} & \frac{\partial {A_z}}{\partial y}-\frac{\partial {A_y}}{\partial z} & 0 \end{array} \right)\]


맥스웰 방정식

  • 맥스웰 방정식은 다음 두 개의 방정식으로 표현된다

\[\epsilon^{\alpha \beta \gamma \delta} \frac{\partial F_{\alpha \beta}}{\partial x^\gamma}=0 \label{fbg}\] \[\partial_{\mu}F^{\mu\nu}=\mu_0 j^{\nu}\label{aeg} \]

방정식 \ref{fbg}

  • 비앙키 항등식
  • 풀어쓰면 다음의 방정식을 얻는다

\[ \begin{array}{l} \frac{\partial F_{1\ 2}}{\partial x^0}+\frac{\partial F_{2\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^2}=-\frac{\frac{\partial }{\partial t}B_z-\frac{\partial }{\partial y}E_x+\frac{\partial }{\partial x}E_y}{c}=0 \\ \frac{\partial F_{1\ 3}}{\partial x^0}+\frac{\partial F_{3\ 0}}{\partial x^1}+\frac{\partial F_{0\ 1}}{\partial x^3}=\frac{\frac{\partial }{\partial t}B_y+\frac{\partial }{\partial z}E_x-\frac{\partial }{\partial x}E_z}{c}=0 \\ \frac{\partial F_{2\ 3}}{\partial x^0}+\frac{\partial F_{3\ 0}}{\partial x^2}+\frac{\partial F_{0\ 2}}{\partial x^3}=-\frac{\frac{\partial }{\partial t}B_x-\frac{\partial }{\partial z}E_y+\frac{\partial }{\partial y}E_z}{c}=0 \\ \frac{\partial F_{2\ 3}}{\partial x^1}+\frac{\partial F_{3\ 1}}{\partial x^2}+\frac{\partial F_{1\ 2}}{\partial x^3}=-\frac{\partial }{\partial x}B_x-\frac{\partial }{\partial y}B_y-\frac{\partial }{\partial z}B_z=0 \end{array} \]

  • 처음의 세 방정식은 패러데이의 법칙에 대한 각 성분에 해당한다

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\]

  • 네번째 방정식은 자기장에 대한 가우스의 법칙이다

\[\nabla \cdot \mathbf{B} = 0\]


방정식 \ref{aeg}

  • 양-밀스 방정식
  • 각 성분에 대해 풀어쓰면 다음이 얻어진다
  • \(\partial_{\mu}F^{\mu 0}=\mu_0 j^{0}\) 는 전기장에 대한 가우스 법칙

\[\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\]

  • \(\partial_{\mu}F^{\mu 1}=\mu_0 j^{1},\partial_{\mu}F^{\mu 2}=\mu_0 j^{2},\partial_{\mu}F^{\mu 3}=\mu_0 j^{3}\)은 앙페르 법칙의 각 성분

\[\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \]


관련된 항목들



매스매티카 파일 및 계산 리소스


사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'four'}, {'OP': '*'}, {'LEMMA': 'gradient'}]