"최단시간강하곡선 문제(Brachistochrone problem)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
(→‎메타데이터: 새 문단)
 
(같은 사용자의 중간 판 22개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[최단시간강하곡선 문제(Brachistochrone problem)]]
+
* 중력을 받고 있는 물체가 정지상태에서 출발하여 가장 짧은 시간내에 하강하기 위해서 따라야 하는 곡선
 +
* 1697년에 베르누이에 의하여 답이 출판
 +
[[파일:4402517-ParabNickF.gif]]
  
 
+
  
 
+
[http://books.google.com/books?id=dptKVr-5LJAC&pg=PA223&sig=PVA7Q1U_MyXinobyhOf54BwjShQ&hl=en#v=onepage&q&f=false Classical Mechanics]
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
 
 
* 중력을 받고 있는 물체가 정지상태에서 출발하여 가장 짧은 시간내에 하강하기 위해서 따라야 하는 곡선
 
*  1697년에 베르누이에 의하여 답이 출판<br>[/pages/4402517/attachments/3980829 ParabNickF.gif]<br>
 
 
 
 
 
 
 
 
 
 
 
[http://books.google.com/books?id=dptKVr-5LJAC&pg=PA223&sig=PVA7Q1U_MyXinobyhOf54BwjShQ&hl=en#v=onepage&q&f=false ]
 
  
 
곡선의 시작점을 <math>(x_0,y_0)=(0,0)</math>, 끝점을 <math>(x_1,y_1)</math>라 두자.
 
곡선의 시작점을 <math>(x_0,y_0)=(0,0)</math>, 끝점을 <math>(x_1,y_1)</math>라 두자.
24번째 줄: 15번째 줄:
 
<math>t=\int \frac{1}{v} \, ds</math>(v는 속력, ds 는 길이요소, t는 시간)
 
<math>t=\int \frac{1}{v} \, ds</math>(v는 속력, ds 는 길이요소, t는 시간)
  
에너지 보존 법칙 <math>mgy=\frac{1}{2}mv^2</math>  에서<math>v=\sqrt{2gy}</math>.
+
에너지 보존 법칙 <math>mgy=\frac{1}{2}mv^2</math> 에서<math>v=\sqrt{2gy}</math>.
  
 
이제 곡선의 x좌표를 y의 함수로 생각하자. 곡선을 따라 내려올 때 걸리는 시간은
 
이제 곡선의 x좌표를 y의 함수로 생각하자. 곡선을 따라 내려올 때 걸리는 시간은
 
+
:<math>T=\int \frac{1}{v} \, ds=\frac{1}{\sqrt{2g}}\int_{0}^{y} \frac{\sqrt{1+x'(y)^2}}{\sqrt{y}} \, dy</math>
<math>T=\int \frac{1}{v} \, ds=\frac{1}{\sqrt{2g}}\int_{0}^{y} \frac{\sqrt{1+x'(y)^2}}{\sqrt{y}} \, dy</math>
 
  
 
문제의 정의에 따라 이 적분값을 최소가 되게 하는 곡선을 찾아야 한다.
 
문제의 정의에 따라 이 적분값을 최소가 되게 하는 곡선을 찾아야 한다.
  
<math>F(y,x,x')=\frac{\sqrt{1+(x')^2}}{\sqrt{y}}</math> 에 대하여 [[오일러-라그랑지 방정식]] 을 적용하면,
+
<math>F(y,x,x')=\frac{\sqrt{1+(x')^2}}{\sqrt{y}}</math> 에 대하여 [[오일러-라그랑지 방정식]] 적용하면,
 
+
:<math>0 =\frac{\partial F}{\partial x} - \frac{d}{dy} \frac{\partial F}{\partial x'}=-\frac{d}{dy}(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}})</math>
<math>0 =\frac{\partial F}{\partial x} - \frac{d}{dy} \frac{\partial F}{\partial x'}=-\frac{d}{dy}(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}})</math>
 
  
 
적당한 상수 a에 대하여 <math>\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}}=\frac{1}{\sqrt{2a}}</math>라 두자.
 
적당한 상수 a에 대하여 <math>\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}}=\frac{1}{\sqrt{2a}}</math>라 두자.
  
이를 풀면 미분방정식  <math>\frac{dx}{dy}=\sqrt{{\frac{y}{2a-y}}</math> 를 얻는다.
+
이를 풀면 다음의 미분방정식을 얻는다.
 +
:<math>\frac{dx}{dy}=\sqrt{\frac{y}{2a-y}}</math>
  
 
(미분방정식의 여러 해에 대한 논의는 http://whistleralley.com/brachistochrone/brachistochrone.htm)
 
(미분방정식의 여러 해에 대한 논의는 http://whistleralley.com/brachistochrone/brachistochrone.htm)
  
 <math>x=\int_{0}^{y}\sqrt{\frac{y}{2a-y}}dy</math>
+
<math>x=\int_{0}^{y}\sqrt{\frac{y}{2a-y}}dy</math>, <math>y=2a\sin^2\frac{\theta}{2}=a(1-\cos\theta)</math>로 치환하면, <math>x=a(\theta-\sin\theta)</math>를 얻는다.
 
 
<math>y=2a\sin^2\frac{\theta}{2}=a(1-\cos\theta)</math>로 치환하면, <math>x=a(\theta-\sin\theta)</math>를 얻는다.
 
  
 
여기서 상수 a는 주어진 점 <math>(x_1,y_1)</math>를 지날 수 있는 값으로 결정된다.
 
여기서 상수 a는 주어진 점 <math>(x_1,y_1)</math>를 지날 수 있는 값으로 결정된다.
50번째 줄: 38번째 줄:
 
따라서 사이클로이드를 얻었다.■
 
따라서 사이클로이드를 얻었다.■
  
 
+
 
+
 
 
 
 
==관련동영상</h5>
 
  
 
+
==재미있는 사실==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==재미있는 사실</h5>
 
  
 
* http://en.wikipedia.org/wiki/Half-pipe ?
 
* http://en.wikipedia.org/wiki/Half-pipe ?
 
* Half-Pipe Skateboarding ?
 
* Half-Pipe Skateboarding ?
  
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
+
==수학용어번역==
  
 
+
*  Brachistochrone curve
 
+
** brachistos - the shortest, chronos - time
==역사</h5>
+
** 최단시간강하 곡선, 최속강하선, 최단강하선
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
 
 
==메모</h5>
 
 
 
 
 
 
 
 
 
  
 
+
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[오일러-라그랑지 방정식]]
 
* [[오일러-라그랑지 방정식]]
  
 
+
 +
==매스매티카 파일 및 계산 리소스==
 +
* http://demonstrations.wolfram.com/TheGreatBrachistochroneRace/
 +
  
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
==사전 형태의 자료==
 
 
*  Brachistochrone curve<br>
 
** brachistos - the shortest, chronos - time
 
** 최단시간강하 곡선, 최속강하선, 최단강하선
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
==사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
129번째 줄: 72번째 줄:
 
* http://mathworld.wolfram.com/BrachistochroneProblem.html
 
* http://mathworld.wolfram.com/BrachistochroneProblem.html
  
 
+
  
 
+
  
==관련논문</h5>
+
==관련논문==
  
* [http://www.jstor.org/stable/4146894 The Brachistochrone Problem]<br>
+
* [http://www.jstor.org/stable/4146894 The Brachistochrone Problem]
 
** Nils P. Johnson, The College Mathematics Journal, Vol. 35, No. 3 (May, 2004), pp. 192-197
 
** Nils P. Johnson, The College Mathematics Journal, Vol. 35, No. 3 (May, 2004), pp. 192-197
* [http://www.jstor.org/stable/2974953 Exploring the Brachistochrone Problem]<br>
+
* [http://www.jstor.org/stable/2974953 Exploring the Brachistochrone Problem]
 
** LaDawn Haws, Terry Kiser, The American Mathematical Monthly, Vol. 102, No. 4 (Apr., 1995), pp. 328-336
 
** LaDawn Haws, Terry Kiser, The American Mathematical Monthly, Vol. 102, No. 4 (Apr., 1995), pp. 328-336
* http://www.jstor.org/action/doBasicSearch?Query=Brachistochrone
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
  
 
+
  
==관련도서</h5>
+
==관련도서==
  
 
* http://books.google.com/books?id=dptKVr-5LJAC&pg=PA223&sig=PVA7Q1U_MyXinobyhOf54BwjShQ&hl=en#v=onepage&q&f=false
 
* http://books.google.com/books?id=dptKVr-5LJAC&pg=PA223&sig=PVA7Q1U_MyXinobyhOf54BwjShQ&hl=en#v=onepage&q&f=false
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
 
  
 
 
  
==관련기사</h5>
+
==링크==
 
+
* [http://curvebank.calstatela.edu/brach/brach.htm The Brachistochrone]
*  네이버 뉴스 검색 (키워드 수정)<br>
+
[[분류:곡선]]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
+
== 노트 ==
  
 
+
===말뭉치===
 +
# More specifically, the brachistochrone can use up to a complete rotation of the cycloid (at the limit when A and B are at the same level), but always starts at a cusp.<ref name="ref_9b3bb6c7">[https://en.wikipedia.org/wiki/Brachistochrone_curve Brachistochrone curve]</ref>
 +
# According to Newtonian scholar Tom Whiteside, in an attempt to outdo his brother, Jakob Bernoulli created a harder version of the brachistochrone problem.<ref name="ref_9b3bb6c7" />
 +
# Johann Bernoulli's direct method is historically important as it was the first proof that the brachistochrone is the cycloid.<ref name="ref_9b3bb6c7" />
 +
# In this blog post, we demonstrate how to use built-in mathematical expressions and the Optimization Module in COMSOL Multiphysics to solve for the brachistochrone curve.<ref name="ref_264bcfed">[https://www.comsol.com/blogs/how-to-solve-for-the-brachistochrone-curve-between-points/ How to Solve for the Brachistochrone Curve Between Points]</ref>
 +
# The brachistochrone curve is an idealized curve that provides the fastest descent possible.<ref name="ref_264bcfed" />
 +
# Next, we use an interpolation function to approximate the brachistochrone curve.<ref name="ref_264bcfed" />
 +
# The brachistochrone curve is a classic physics problem, that derives the fastest path between two points A and B which are at different elevations.<ref name="ref_aeddd8c4">[https://www.instructables.com/The-Brachistochrone-Curve/ The Brachistochrone Curve]</ref>
 +
# There is no better way to learn than through STEM, so follow on to make your very own working brachistochrone model.<ref name="ref_aeddd8c4" />
 +
# Before I end I must voice once more the admiration I feel for the unexpected identity of Huygens' tautochrone and my brachistochrone.<ref name="ref_4722e185">[https://mathshistory.st-andrews.ac.uk/HistTopics/Brachistochrone/ Brachistochrone problem]</ref>
 +
# This article presents the problem of quickest descent, or the Brachistochrone curve, that may be solved by the calculus of variations and the Euler-Lagrange equation.<ref name="ref_68ed8ad5">[https://www.tau.ac.il/~flaxer/edu/course/computerappl/exercise/Brachistochrone%20Curve.pdf Osaka keidai ronshu, vol. 61 no. 6 march 2011]</ref>
 +
# The rst step in the solution of the Euler-Lagrange equation for the brachistochrone problem: is to reduce it to a rst-order equation.<ref name="ref_ef0bb1d5">[http://www.math.utk.edu/~freire/teaching/m231f08/m231f08brachistochrone.pdf The brachistochrone problem.]</ref>
 +
# the red cycloid beats the other two It can also be asked what the brachistochrone curve among the curves joining two points and having a given shape would be.<ref name="ref_b32ffb35">[https://mathcurve.com/courbes2d.gb/brachistochrone/brachistochrone.shtml Brachistochrone]</ref>
 +
# For example, for two points at the same altitude and V-shaped curves, the brachistochrone curve is the one for which the angle of the V is a right angle, as is shown in the animation opposite.<ref name="ref_b32ffb35" />
 +
# The problem of the brachistochrone with given length is studied on this page.<ref name="ref_b32ffb35" />
 +
# One can also try to find the brachistochrone "with friction".<ref name="ref_b32ffb35" />
 +
# The brachistochrone problem was one of the earliest problems posed in the calculus of variations.<ref name="ref_f5cca441">[https://mathworld.wolfram.com/BrachistochroneProblem.html Brachistochrone Problem -- from Wolfram MathWorld]</ref>
 +
# Brachistochrone, the planar curve on which a body subjected only to the force of gravity will slide (without friction) between two points in the least possible time.<ref name="ref_5bcf547e">[https://www.britannica.com/science/brachistochrone Brachistochrone | physics]</ref>
 +
# The name brachistochrone comes from two Greek words, brachistos meaning shortest, and chronos meaning time.<ref name="ref_02e66dfd">[https://www.myphysicslab.com/roller/brachistochrone-en.html myPhysicsLab Brachistochrone]</ref>
 +
# The brachistochrone curve can be generated by tracking a point on the rim of a wheel as it rolls on the ground.<ref name="ref_02e66dfd" />
 +
# This mathematical challenge is known as the problem of the brachistochrone.<ref name="ref_e19ac3b2">[https://medium.com/cantors-paradise/the-famous-problem-of-the-brachistochrone-8b955d24bdf7 The Famous Problem of the Brachistochrone]</ref>
 +
# Figure 3: Newton’s handwritten solution to the brachistochrone problem (source).<ref name="ref_e19ac3b2" />
 +
# The classical problem in calculus of variation is the so called brachistochrone problem 1 posed (and solved) by Bernoulli in 1696.<ref name="ref_69295678">[https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf Basics of calculus of variations]</ref>
 +
# Abstract: This article presents the problem of quickest descent, or the Brachistochrone curve, that may be solved by the calculus of variations and the Euler-Lagrange equation.<ref name="ref_b10a7db6">[https://ijpam.eu/contents/2013-82-3/8/8.pdf International journal of pure and applied mathematics]</ref>
 +
# Historically and pedagogically, the prototype problem introducing the cal- culus of variations is the brachistochrone, from the Greek for shortest time.<ref name="ref_15b1f6a4">[http://www.hep.caltech.edu/~fcp/math/variationalCalculus/variationalCalculus.pdf Physics 129a]</ref>
 +
===소스===
 +
<references />
  
==링크</h5>
+
== 메타데이터 ==
  
* [http://curvebank.calstatela.edu/brach/brach.htm The Brachistochrone]
+
===위키데이터===
*  구글 블로그 검색<br>
+
* ID : [https://www.wikidata.org/wiki/Q529985 Q529985]
** http://blogsearch.google.com/blogsearch?q=
+
===Spacy 패턴 목록===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* [{'LOWER': 'brachistochrone'}, {'LEMMA': 'curve'}]
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LEMMA': 'brachistochrone'}]
* [http://betterexplained.com/ BetterExplained]
 
* [http://www.exampleproblems.com/ http://www.exampleproblems.com]
 

2021년 2월 23일 (화) 19:09 기준 최신판

개요

  • 중력을 받고 있는 물체가 정지상태에서 출발하여 가장 짧은 시간내에 하강하기 위해서 따라야 하는 곡선
  • 1697년에 베르누이에 의하여 답이 출판

4402517-ParabNickF.gif


Classical Mechanics

곡선의 시작점을 \((x_0,y_0)=(0,0)\), 끝점을 \((x_1,y_1)\)라 두자.

곡선을 따라 내려올때 걸리는 시간은 다음과 같이 구할 수 있다.

\(t=\int \frac{1}{v} \, ds\)(v는 속력, ds 는 길이요소, t는 시간)

에너지 보존 법칙 \(mgy=\frac{1}{2}mv^2\) 에서\(v=\sqrt{2gy}\).

이제 곡선의 x좌표를 y의 함수로 생각하자. 곡선을 따라 내려올 때 걸리는 시간은 \[T=\int \frac{1}{v} \, ds=\frac{1}{\sqrt{2g}}\int_{0}^{y} \frac{\sqrt{1+x'(y)^2}}{\sqrt{y}} \, dy\]

문제의 정의에 따라 이 적분값을 최소가 되게 하는 곡선을 찾아야 한다.

\(F(y,x,x')=\frac{\sqrt{1+(x')^2}}{\sqrt{y}}\) 에 대하여 오일러-라그랑지 방정식 을 적용하면, \[0 =\frac{\partial F}{\partial x} - \frac{d}{dy} \frac{\partial F}{\partial x'}=-\frac{d}{dy}(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}})\]

적당한 상수 a에 대하여 \(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}}=\frac{1}{\sqrt{2a}}\)라 두자.

이를 풀면 다음의 미분방정식을 얻는다. \[\frac{dx}{dy}=\sqrt{\frac{y}{2a-y}}\]

(미분방정식의 여러 해에 대한 논의는 http://whistleralley.com/brachistochrone/brachistochrone.htm)

\(x=\int_{0}^{y}\sqrt{\frac{y}{2a-y}}dy\), \(y=2a\sin^2\frac{\theta}{2}=a(1-\cos\theta)\)로 치환하면, \(x=a(\theta-\sin\theta)\)를 얻는다.

여기서 상수 a는 주어진 점 \((x_1,y_1)\)를 지날 수 있는 값으로 결정된다.

따라서 사이클로이드를 얻었다.■



재미있는 사실


수학용어번역

  • Brachistochrone curve
    • brachistos - the shortest, chronos - time
    • 최단시간강하 곡선, 최속강하선, 최단강하선


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료



관련논문



관련도서


링크

노트

말뭉치

  1. More specifically, the brachistochrone can use up to a complete rotation of the cycloid (at the limit when A and B are at the same level), but always starts at a cusp.[1]
  2. According to Newtonian scholar Tom Whiteside, in an attempt to outdo his brother, Jakob Bernoulli created a harder version of the brachistochrone problem.[1]
  3. Johann Bernoulli's direct method is historically important as it was the first proof that the brachistochrone is the cycloid.[1]
  4. In this blog post, we demonstrate how to use built-in mathematical expressions and the Optimization Module in COMSOL Multiphysics to solve for the brachistochrone curve.[2]
  5. The brachistochrone curve is an idealized curve that provides the fastest descent possible.[2]
  6. Next, we use an interpolation function to approximate the brachistochrone curve.[2]
  7. The brachistochrone curve is a classic physics problem, that derives the fastest path between two points A and B which are at different elevations.[3]
  8. There is no better way to learn than through STEM, so follow on to make your very own working brachistochrone model.[3]
  9. Before I end I must voice once more the admiration I feel for the unexpected identity of Huygens' tautochrone and my brachistochrone.[4]
  10. This article presents the problem of quickest descent, or the Brachistochrone curve, that may be solved by the calculus of variations and the Euler-Lagrange equation.[5]
  11. The rst step in the solution of the Euler-Lagrange equation for the brachistochrone problem: is to reduce it to a rst-order equation.[6]
  12. the red cycloid beats the other two It can also be asked what the brachistochrone curve among the curves joining two points and having a given shape would be.[7]
  13. For example, for two points at the same altitude and V-shaped curves, the brachistochrone curve is the one for which the angle of the V is a right angle, as is shown in the animation opposite.[7]
  14. The problem of the brachistochrone with given length is studied on this page.[7]
  15. One can also try to find the brachistochrone "with friction".[7]
  16. The brachistochrone problem was one of the earliest problems posed in the calculus of variations.[8]
  17. Brachistochrone, the planar curve on which a body subjected only to the force of gravity will slide (without friction) between two points in the least possible time.[9]
  18. The name brachistochrone comes from two Greek words, brachistos meaning shortest, and chronos meaning time.[10]
  19. The brachistochrone curve can be generated by tracking a point on the rim of a wheel as it rolls on the ground.[10]
  20. This mathematical challenge is known as the problem of the brachistochrone.[11]
  21. Figure 3: Newton’s handwritten solution to the brachistochrone problem (source).[11]
  22. The classical problem in calculus of variation is the so called brachistochrone problem 1 posed (and solved) by Bernoulli in 1696.[12]
  23. Abstract: This article presents the problem of quickest descent, or the Brachistochrone curve, that may be solved by the calculus of variations and the Euler-Lagrange equation.[13]
  24. Historically and pedagogically, the prototype problem introducing the cal- culus of variations is the brachistochrone, from the Greek for shortest time.[14]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'brachistochrone'}, {'LEMMA': 'curve'}]
  • [{'LEMMA': 'brachistochrone'}]