"파이 π는 무리수이다"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
88번째 줄: 88번째 줄:
 
===귀류법을 통한 증명의 마무리===
 
===귀류법을 통한 증명의 마무리===
  
이제 $\pi$는 무리수, 즉 <math>\pi=a/b</math> 이라고 가정하자.  
+
이제 <math>\pi</math>는 무리수, 즉 <math>\pi=a/b</math> 이라고 가정하자.  
  
 
'''보조정리 3'''에 의하여,
 
'''보조정리 3'''에 의하여,
141번째 줄: 141번째 줄:
 
==관련논문==
 
==관련논문==
  
* '''[Huylebrouck2001]'''[http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2886 Similarities in Irrationality Proofs for π, ln2, ζ(2), and ζ(3)]<br>
+
* '''[Huylebrouck2001]'''[http://mathdl.maa.org/mathDL/?pa=content&sa=viewDocument&nodeId=2886 Similarities in Irrationality Proofs for π, ln2, ζ(2), and ζ(3)]
 
** Dirk Huylebrouck, The American Mathematical Monthly,Vol. 108, March 2001 pp. 222-231
 
** Dirk Huylebrouck, The American Mathematical Monthly,Vol. 108, March 2001 pp. 222-231
* [http://www.jstor.org/stable/2974737%20On%20Lambert%27s%20Proof%20of%20the%20Irrationality%20of%20%CF%80%20M.%20Laczkovich%20The%20American%20Mathematical%20Monthly%20Vol.%20104,%20No.%205%20%28May,%201997%29,%20pp.%20439-443%20Published%20by:%20Mathematical%20Association%20of%20America%20Article%20Stable%20URL:%20http://www.jstor.org/stable/2974737 On Lambert's Proof of the Irrationality of Pi]<br>
+
* [http://www.jstor.org/stable/2974737%20On%20Lambert%27s%20Proof%20of%20the%20Irrationality%20of%20%CF%80%20M.%20Laczkovich%20The%20American%20Mathematical%20Monthly%20Vol.%20104,%20No.%205%20%28May,%201997%29,%20pp.%20439-443%20Published%20by:%20Mathematical%20Association%20of%20America%20Article%20Stable%20URL:%20http://www.jstor.org/stable/2974737 On Lambert's Proof of the Irrationality of Pi]
 
** M. Laczkovich, The American Mathematical Monthly, Vol. 104, No. 5 (May, 1997), pp. 439-443
 
** M. Laczkovich, The American Mathematical Monthly, Vol. 104, No. 5 (May, 1997), pp. 439-443
* [http://dx.doi.org/10.1090/S0002-9904-1947-08821-2 A simple proof that $\pi$ is irrational]<br>
+
* [http://dx.doi.org/10.1090/S0002-9904-1947-08821-2 A simple proof that <math>\pi</math> is irrational]
 
** Ivan Niven,  Bull. Amer. Math. Soc. 53 (1947), 509.  
 
** Ivan Niven,  Bull. Amer. Math. Soc. 53 (1947), 509.  
  
157번째 줄: 157번째 줄:
 
[[분류:원주율]]
 
[[분류:원주율]]
 
[[분류:무리수와 초월수]]
 
[[분류:무리수와 초월수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q8777 Q8777]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'hypertext'}, {'LOWER': 'transfer'}, {'LEMMA': 'Protocol'}]
 +
* [{'LEMMA': 'HTTP'}]
 +
* [{'LEMMA': 'http://'}]
 +
* [{'LOWER': 'http'}, {'LEMMA': ':'}]

2021년 2월 17일 (수) 06:04 기준 최신판

개요

  • 파이가 무리수임의 증명
  • [Huylebrouck2001]참조


증명

관찰

\(\int_0^1 \sin \pi x\,dx = \frac{2}{\pi}\)

\(\int_0^1 x \sin \pi x\,dx = \frac{1}{\pi}\)

\(\int_0^1x^2 \sin \pi x\,dx = \frac{\pi^2-4}{\pi^3}\)

\(\int_0^1x^3 \sin \pi x\,dx = \frac{\pi^2-6}{\pi^3}\)

\(\int_0^1x^4 \sin \pi x\,dx = \frac{48-12 \pi^2+\pi^4}{\pi^5}\)

\(\int_0^1x^5 \sin \pi x\,dx = \frac{120-20 \pi^2+\pi^4}{\pi^5}\)

\(\int_0^1x^6 \sin \pi x\,dx = \frac{-1440+360\pi^2-30 \pi^4+\pi^6}{\pi^7}\)

\(\int_0^1x^7 \sin \pi x\,dx = \frac{-5040+840\pi^2-42 \pi^4+\pi^6}{\pi^7}\)



보조정리 1

다음을 만족시키는 정수 \(a_0,a_1,\cdots,a_{n}\) 이 존재한다. \[\int_0^1x^n \sin \pi x\,dx=\frac{a_n\pi^{n}+\cdots+a_0}{\pi^{n+1}}\]

(증명)

\(y_{n}=\int_0^1x^n \sin \pi x\,dx\) 라 두자.

다음 점화식이 성립한다. \[y_{n}=\frac{1}{\pi}-\frac{n(n-1)}{\pi^2}y_{n-2},n\geq 2,y_0=\frac{2}{\pi},y_1=\frac{1}{\pi}.\]

수학적귀납법에 의해 보조정리가 증명된다. ■




정의

르장드르 다항식 의 변형, \(P_n(x) = \frac{1}{n!} {d^n \over dx^n } \left[ x^{n}(1-x)^n \right]\) 을 정의하자.

예 \begin{array}{l} 1 \\ -2 x+1 \\ 6 x^2-6 x+1 \\ -20 x^3+30 x^2-12 x+1 \\ 70 x^4-140 x^3+90 x^2-20 x+1 \\ -252 x^5+630 x^4-560 x^3+210 x^2-30 x+1 \\ 924 x^6-2772 x^5+3150 x^4-1680 x^3+420 x^2-42 x+1 \\ -3432 x^7+12012 x^6-16632 x^5+11550 x^4-4200 x^3+756 x^2-56 x+1 \end{array}


보조정리 2

\(n\geq 1\) 일 때, n번 미분가능한 함수 \(f\)에 대하여 다음이 성립한다. \[\int_0^1P_n(x)f(x)\,dx=\frac{(-1)^{n}}{n!}\int_0^1 x^{n}(1-x)^nf^{(n)}(x)\,dx.\]

(증명)

부분적분의 활용. ζ(3)는 무리수이다(아페리의 정리) 의 보조정리4 참조. ■

보조정리 3

다음을 만족시키는 정수 \(a_0,a_1,\cdots,a_{n}\) 이 존재한다 \[\int_{0}^{1}P_n(x)\sin \pi x\,dx=\frac{a_n\pi^{n}+\cdots+a_0}{\pi^{n+1}}\] (증명)

\(P_{n}(x)\)는 정수계수를 갖는 n차 다항식이므로, 보조정리 1 에 의하여 증명된다. ■



귀류법을 통한 증명의 마무리

이제 \(\pi\)는 무리수, 즉 \(\pi=a/b\) 이라고 가정하자.

보조정리 3에 의하여,

\[I_{n}=\int_{0}^{1}P_n(x)\sin \pi x\,dx=\frac{a_n\pi^{n}+\cdots+a_0}{\pi^{n+1}}=\frac{b(a_na^{n}+a_{n-1}ba^{n-1}+\cdots+a_0b^{n})}{a^{n+1}}\]

는 0이 아닌 유리수가 된다. 따라서 \(a^{n+1}I_{n}\) 는 자연수이다.

보조정리 2에 의하여, \[0<|a^{n+1}I_{n}|=|a^{n+1}\int_{0}^{1}P_n(x)\sin x\,dx|=|a^{n+1}\int_{0}^{1}\frac{1}{n!}x^n(1-x)^n\frac{d^{n}}{dx^{n}}\sin \pi x\,dx|\]

구간 \([0,1]\)에서 \(x(1-x)\)의 최대값은 \(1/4\)이므로, \[|a^{n+1}\int_{0}^{1}\frac{1}{n!}x^n(1-x)^n\frac{d^{n}}{dx^{n}}\sin \pi x\,dx|\leq |a^{n+1}\frac{1}{n!}\frac{\pi^{n}}{4^n}|=|\frac{a}{n!}(\frac{a\pi}{4})^n|\] 이다.

n이 커지면 우변은 0으로 수렴한다.

따라서 \(a^{n+1}I_{n}\) 는 자연수일 수 없다. 모순. 따라서 π는 무리수이다. ■

역사



메모

관련된 항목들



사전 형태의 자료



관련논문



블로그

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hypertext'}, {'LOWER': 'transfer'}, {'LEMMA': 'Protocol'}]
  • [{'LEMMA': 'HTTP'}]
  • [{'LEMMA': 'http://'}]
  • [{'LOWER': 'http'}, {'LEMMA': ':'}]