포아송분포

수학노트
둘러보기로 가기 검색하러 가기

이 항목의 스프링노트 원문주소[편집]

 

 

개요[편집]

  • 확률변수 \(X\)가 \(\{0,1,2,\cdots\}\)에서 값을 가질때, 다음과 같은 확률질량함수를 갖는 확률분포\[\text{Pr}(X=k)=f(k)=\frac{\lambda^k e^{-\lambda}}{k!}\]
  • 이항분포의 시행횟수 n이 매우 크고, 성공확률 p가 작은 경우 포아송분포로 근사가능

 

 

[편집]

  • 한시간 동안 평균 120명, 즉 1분간 평균 2명이 방문하는 장소가 있다고 하자. 1분을 단위시간으로 정하면, 1분간 방문하는 사람의 수는 \(\lambda=2\) 인 확률분포를 따른다고 말할 수 있다.
  • 고객센터에서 1분당 받을 전화통화수의 모델링에 사용할 수 있다

 

 

재미있는 사실[편집]

 

 

 

역사[편집]

 

 

 

메모[편집]

 

관련된 항목들[편집]

 

 

수학용어번역[편집]

 

 

사전 형태의 자료[편집]

 

 

관련논문[편집]

 


 

 


 

 

블로그[편집]