"호프 대수(Hopf algebra)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
51번째 줄: 51번째 줄:
 
** comultiplication and counit are a ring maps
 
** comultiplication and counit are a ring maps
 
** multiplication and unit are a coring maps
 
** multiplication and unit are a coring maps
**  
+
** <math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>
  
 
 
 
 

2012년 7월 28일 (토) 06:37 판

이 항목의 수학노트 원문주소

 

 

개요
  • 호프 대수(Hopf algebra) = bi-algebra with an antipoe
  • '군(group)' (군론(group theory) 항목 참조) 개념의 일반화
  • 양자군의 이론에서 중요한 역할
    • 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra

 

 

군(group) 의 정의 : abstract nonsense
  • 군의 정의를 abstract nonsense를 사용하여 표현하기
  • a group is a set \(G&bg=ffffff&fg=000000&s=0\) equipped with
    • a multiplication map \(\mu: G \otimes G \to G\)
    • an inversion map \(S: G \to G\)
    • an identity element \(1:+*+\to+G&bg=ffffff&fg=000000&s=0\), where \(*&bg=ffffff&fg=000000&s=0\) is a one point set
    • \(\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0\)  (trivial representation, counit)
    • \(\Delta: G \to G \otimes G\), diagonal map: \(g \mapsto g\otimes g\)
  • 일반적으로 군을 정의할 때 드러나지 않는 \(\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0\) , \(\Delta:+G+\to+G+\times+G&bg=ffffff&fg=000000&s=0\)를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다
  • 결합법칙
    \(\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)\)
  • 역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다)
    \(\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\), i.e., multiplying an element with its inverse yields the unit.

 

 

호프 대수(Hopf algebra) 의 정의
  • Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode
  • Given a commutative ring \(R&bg=ffffff&fg=000000&s=0\), a Hopf algebra over \(R&bg=ffffff&fg=000000&s=0\) is a six-tuple \((G, \mu, 1, S, \epsilon, \Delta)\),
    • \(G&bg=ffffff&fg=000000&s=0\)is an \(R&bg=ffffff&fg=000000&s=0\)-module
    • \(\mu: G \otimes_R G \to G\) is a multiplication map
    • \(1:+R+\to+G&bg=ffffff&fg=000000&s=0\) is a unit
    • \(S: G \to G\) is called the antipode
    • \(\epsilon:+G+\to+R&bg=ffffff&fg=000000&s=0\) is a counit
    • \(\Delta:+G+\to+G+\otimes_R+G&bg=ffffff&fg=000000&s=0\) is called comultiplication.
  • These are required to satisfy relations
    • \((G,\mu,1)\)  ring
    • \((G,\Delta,\epsilon)\) coring (just turn all the previous arrows around)
    • comultiplication and counit are a ring maps
    • multiplication and unit are a coring maps
    • \(\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\)

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서