"호프 대수(Hopf algebra)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5>이 항목의 수학노트 원문주소</h5>
+
==개요==
 
 
* [[search?q=%ED%98%B8%ED%94%84%20%EB%8C%80%EC%88%98&parent id=12529068|호프 대수]]
 
 
 
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
  
 
* 호프 대수(Hopf algebra) = bi-algebra with an antipoe
 
* 호프 대수(Hopf algebra) = bi-algebra with an antipoe
* '군(group)' ([[군론(group theory)]] 항목 참조) 개념의 일반화
+
* '군 (group)' ([[군론(group theory)]] 항목 참조) 개념의 일반화
 
*  양자군의 이론에서 중요한 역할<br>
 
*  양자군의 이론에서 중요한 역할<br>
 
** 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra
 
** 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra
  
 
+
  
 
+
  
<h5>군(group) 의 정의 : abstract nonsense</h5>
+
==군(group) 의 정의 : abstract nonsense==
  
 
* 군의 정의를 abstract nonsense를 사용하여 표현하기
 
* 군의 정의를 abstract nonsense를 사용하여 표현하기
*  a group is a set <math>G&bg=ffffff&fg=000000&s=0</math> equipped with<br>
+
*  a group is a set <math>G&bg=ffffff&fg=000000&s=0</math> equipped with<br>
** a multiplication map <math>\mu: G \otimes G \to G</math>
+
** a multiplication map <math>\mu: G \otimes G \to G</math>
** an inversion map <math>S: G \to G</math>
+
** an inversion map <math>S: G \to G</math>
** an identity element <math>1:+*+\to+G&bg=ffffff&fg=000000&s=0</math>, where <math>*&bg=ffffff&fg=000000&s=0</math> is a one point set
+
** an identity element <math>1:+*+\to+G&bg=ffffff&fg=000000&s=0</math>, where <math>*&bg=ffffff&fg=000000&s=0</math> is a one point set
** <math>\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0</math>  (trivial representation, counit)
+
** <math>\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0</math> (trivial representation, counit)
** <math>\Delta: G \to G \otimes G</math>, diagonal map: <math>g \mapsto g\otimes g</math>
+
** <math>\Delta: G \to G \otimes G</math>, diagonal map: <math>g \mapsto g\otimes g</math>
 
* 일반적으로 군을 정의할 때 드러나지 않는 <math>\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0</math> , <math>\Delta:+G+\to+G+\times+G&bg=ffffff&fg=000000&s=0</math>를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다
 
* 일반적으로 군을 정의할 때 드러나지 않는 <math>\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0</math> , <math>\Delta:+G+\to+G+\times+G&bg=ffffff&fg=000000&s=0</math>를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다
 
*  결합법칙<br><math>\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)</math><br>
 
*  결합법칙<br><math>\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)</math><br>
 
*  역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다)<br><math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>, i.e., multiplying an element with its inverse yields the unit.<br>
 
*  역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다)<br><math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>, i.e., multiplying an element with its inverse yields the unit.<br>
  
 
+
  
 
+
  
<h5>호프 대수(Hopf algebra) 의 정의</h5>
+
==호프 대수(Hopf algebra) 의 정의==
  
* Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode
+
* Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode
*  Given a commutative ring <math>R&bg=ffffff&fg=000000&s=0</math>, a Hopf algebra over <math>R&bg=ffffff&fg=000000&s=0</math> is a six-tuple <math>(G, \mu, 1, S, \epsilon, \Delta)</math>,<br>
+
*  Given a commutative ring <math>R&bg=ffffff&fg=000000&s=0</math>, a Hopf algebra over <math>R&bg=ffffff&fg=000000&s=0</math> is a six-tuple <math>(G, \mu, 1, S, \epsilon, \Delta)</math>,<br>
** <math>G&bg=ffffff&fg=000000&s=0</math>is an <math>R&bg=ffffff&fg=000000&s=0</math>-module
+
** <math>G&bg=ffffff&fg=000000&s=0</math>is an <math>R&bg=ffffff&fg=000000&s=0</math>-module
** <math>\mu: G \otimes_R G \to G</math> is a multiplication map
+
** <math>\mu: G \otimes_R G \to G</math> is a multiplication map
** <math>1:+R+\to+G&bg=ffffff&fg=000000&s=0</math> is a unit
+
** <math>1:+R+\to+G&bg=ffffff&fg=000000&s=0</math> is a unit
** <math>S: G \to G</math> is called the antipode
+
** <math>S: G \to G</math> is called the antipode
** <math>\epsilon:+G+\to+R&bg=ffffff&fg=000000&s=0</math> is a counit
+
** <math>\epsilon:+G+\to+R&bg=ffffff&fg=000000&s=0</math> is a counit
** <math>\Delta:+G+\to+G+\otimes_R+G&bg=ffffff&fg=000000&s=0</math> is called comultiplication.
+
** <math>\Delta:+G+\to+G+\otimes_R+G&bg=ffffff&fg=000000&s=0</math> is called comultiplication.
  
 
+
  
 
*  These are required to satisfy relations<br>
 
*  These are required to satisfy relations<br>
** <math>(G,\mu,1)</math>  ring
+
** <math>(G,\mu,1)</math> ring
 
** <math>(G,\Delta,\epsilon)</math> coring (just turn all the previous arrows around)
 
** <math>(G,\Delta,\epsilon)</math> coring (just turn all the previous arrows around)
 
** comultiplication and counit are a ring maps
 
** comultiplication and counit are a ring maps
55번째 줄: 47번째 줄:
 
** antipode <math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>, 많은 경우는 antihomomorphism 즉, <math>S(ab)=S(b)S(a)</math>
 
** antipode <math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>, 많은 경우는 antihomomorphism 즉, <math>S(ab)=S(b)S(a)</math>
  
 
+
  
 
+
  
<h5>표현론에서 유용한 점</h5>
+
==표현론에서 유용한 점==
  
 
+
  
 
* H : Hopf algebra
 
* H : Hopf algebra
69번째 줄: 61번째 줄:
 
* counit - trivial representations
 
* counit - trivial representations
 
*  tensor product<br><math>a.(v\otimes w)= \Delta(a)(v\otimes w)</math><br>
 
*  tensor product<br><math>a.(v\otimes w)= \Delta(a)(v\otimes w)</math><br>
*  dual representation<br> For <math>f\in V^{*}</math>, <math>(a.f)(v)= f(S(a).v)</math><br>
+
*  dual representation<br> For <math>f\in V^{*}</math>, <math>(a.f)(v)= f(S (a).v)</math><br>
 
* the category of representations has a monoidal structure with duals
 
* the category of representations has a monoidal structure with duals
  
 
+
  
 
+
  
<h5>예 : group ring</h5>
+
==예 : group ring==
  
 
* <math>H=\mathbb{F}G</math> : group algebra of G over F
 
* <math>H=\mathbb{F}G</math> : group algebra of G over F
84번째 줄: 76번째 줄:
 
*  antipode<br><math>S(g)=g^{-1}</math><br>
 
*  antipode<br><math>S(g)=g^{-1}</math><br>
  
 
+
  
 
+
  
<h5>예 : UEA</h5>
+
==예 : UEA==
  
 
* simple Lie algebra <math>\mathfrak{g}</math>
 
* simple Lie algebra <math>\mathfrak{g}</math>
 
* <math>U(\mathfrak{g})</math>
 
* <math>U(\mathfrak{g})</math>
*  comultiplication (this explains why the tensor product of <math>U(\mathfrak{g})</math>-modules is defined as known)<br><math>\Delta : U(\mathfrak{g}) \to U(\mathfrak{g})\otimes U(\mathfrak{g}) </math><br><math>\Delta(x) =x\otimes 1+ 1 \otimes x</math> for <math>x \in \mathfrak{g}</math><br><math>\Delta(1)=1\otimes 1</math><br>
+
*  comultiplication (this explains why the tensor product of <math>U(\mathfrak{g})</math>-modules is defined as known)<br><math>\Delta : U (\mathfrak{g}) \to U (\mathfrak{g})\otimes U(\mathfrak{g}) </math><br><math>\Delta(x) =x\otimes 1+ 1 \otimes x</math> for <math>x \in \mathfrak{g}</math><br><math>\Delta(1)=1\otimes 1</math><br>
  
*  counit<br><math>\epsilon(x) =0</math> for <math>x \in \mathfrak{g}</math><br><math>\epsilon(1) =1</math><br>
+
*  counit<br><math>\epsilon(x) =0</math> for <math>x \in \mathfrak{g}</math><br><math>\epsilon(1) =1</math><br>
*  antipode<br><math>S(x) = -x</math> for <math>x \in \mathfrak{g}</math><br><math>S(1) =1</math><br>
+
*  antipode<br><math>S(x) = -x</math> for <math>x \in \mathfrak{g}</math><br><math>S(1) =1</math><br>
 
* [[quantized universal enveloping algebra]]<br>
 
* [[quantized universal enveloping algebra]]<br>
  
 
+
  
 
+
  
 
+
  
 
+
  
 
+
  
<h5>역사</h5>
+
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  
 
+
  
 
+
  
<h5>메모</h5>
+
==메모==
  
* [http://sbseminar.wordpress.com/2007/10/07/group-hopf-algebra/ Group = Hopf algebra] , Scott Carnahan, Secret Blogging Seminar,  October 7, 2007
+
* [http://sbseminar.wordpress.com/2007/10/07/group-hopf-algebra/ Group = Hopf algebra] , Scott Carnahan, Secret Blogging Seminar, October 7, 2007
 
* http://mathoverflow.net/questions/101739/is-there-any-progress-on-the-theory-in-the-paper-geometric-methods-in-representa<br>
 
* http://mathoverflow.net/questions/101739/is-there-any-progress-on-the-theory-in-the-paper-geometric-methods-in-representa<br>
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
+
  
 
+
  
 
<h5>수학용어번역</h5>
 
<h5>수학용어번역</h5>

2012년 10월 8일 (월) 07:48 판

개요

  • 호프 대수(Hopf algebra) = bi-algebra with an antipoe
  • '군 (group)' (군론(group theory) 항목 참조) 개념의 일반화
  • 양자군의 이론에서 중요한 역할
    • 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra



군(group) 의 정의 : abstract nonsense

  • 군의 정의를 abstract nonsense를 사용하여 표현하기
  • a group is a set \(G&bg=ffffff&fg=000000&s=0\) equipped with
    • a multiplication map \(\mu: G \otimes G \to G\)
    • an inversion map \(S: G \to G\)
    • an identity element \(1:+*+\to+G&bg=ffffff&fg=000000&s=0\), where \(*&bg=ffffff&fg=000000&s=0\) is a one point set
    • \(\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0\) (trivial representation, counit)
    • \(\Delta: G \to G \otimes G\), diagonal map\[g \mapsto g\otimes g\]
  • 일반적으로 군을 정의할 때 드러나지 않는 \(\epsilon:+G+\to+*&bg=ffffff&fg=000000&s=0\) , \(\Delta:+G+\to+G+\times+G&bg=ffffff&fg=000000&s=0\)를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다
  • 결합법칙
    \(\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)\)
  • 역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다)
    \(\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\), i.e., multiplying an element with its inverse yields the unit.



호프 대수(Hopf algebra) 의 정의

  • Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode
  • Given a commutative ring \(R&bg=ffffff&fg=000000&s=0\), a Hopf algebra over \(R&bg=ffffff&fg=000000&s=0\) is a six-tuple \((G, \mu, 1, S, \epsilon, \Delta)\),
    • \(G&bg=ffffff&fg=000000&s=0\)is an \(R&bg=ffffff&fg=000000&s=0\)-module
    • \(\mu: G \otimes_R G \to G\) is a multiplication map
    • \(1:+R+\to+G&bg=ffffff&fg=000000&s=0\) is a unit
    • \(S: G \to G\) is called the antipode
    • \(\epsilon:+G+\to+R&bg=ffffff&fg=000000&s=0\) is a counit
    • \(\Delta:+G+\to+G+\otimes_R+G&bg=ffffff&fg=000000&s=0\) is called comultiplication.


  • These are required to satisfy relations
    • \((G,\mu,1)\) ring
    • \((G,\Delta,\epsilon)\) coring (just turn all the previous arrows around)
    • comultiplication and counit are a ring maps
    • multiplication and unit are a coring maps
    • antipode \(\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\), 많은 경우는 antihomomorphism 즉, \(S(ab)=S(b)S(a)\)



표현론에서 유용한 점

  • H : Hopf algebra
  • V,W : H-modules
  • one wants to have the following H-modules \(V\otimes W\) and \(V^{*}\)
  • For Hopf algebra, we can construct them as H-modules
  • counit - trivial representations
  • tensor product
    \(a.(v\otimes w)= \Delta(a)(v\otimes w)\)
  • dual representation
    For \(f\in V^{*}\), \((a.f)(v)= f(S (a).v)\)
  • the category of representations has a monoidal structure with duals



예 : group ring

  • \(H=\mathbb{F}G\) : group algebra of G over F
  • multiplication and identity element
    \(m : \mathbb Z[G]\otimes \mathbb Z[G] \to \mathbb Z[G]\)
  • comultiplication
    \(\Delta : \mathbb Z[G] \to \mathbb Z[G]\otimes \mathbb Z[G] \)
    \(g \mapsto g\otimes g\)
  • counit
    \(\epsilon(g)=1\)
  • antipode
    \(S(g)=g^{-1}\)



예 : UEA

  • simple Lie algebra \(\mathfrak{g}\)
  • \(U(\mathfrak{g})\)
  • comultiplication (this explains why the tensor product of \(U(\mathfrak{g})\)-modules is defined as known)
    \(\Delta : U (\mathfrak{g}) \to U (\mathfrak{g})\otimes U(\mathfrak{g}) \)
    \(\Delta(x) =x\otimes 1+ 1 \otimes x\) for \(x \in \mathfrak{g}\)
    \(\Delta(1)=1\otimes 1\)






역사



메모



관련된 항목들

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서