Belyi map

수학노트
둘러보기로 가기 검색하러 가기

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points \(\{0,1,\infty\}\) only.
  • Belyi map gives rise to a projective curve



Belyi maps of degree 2

  • Belyi map \(f:\mathbb{P}^1\to \mathbb{P}^1\) defined by \(z\mapsto z^2\)



Grobner techniques

  • start with three permutations \((12), (23), (132)\). They generate \(S_3\).
  • Riemann-Hurwitz formula gives the genus \(g=1-3+(1+1+2)/2=0\)



complex analytic method

  • using modular forms



p-adic method

related items


expositions


articles

  • Ayberk Zeytin, Belyi Lattes Maps, arXiv:1011.5644[math.AG], November 25 2010, http://arxiv.org/abs/1011.5644v3
  • Van Hoeij, Mark, and Raimundas Vidunas. “Belyi Functions for Hyperbolic Hypergeometric-to-Heun Transformations.” Physical Review Letters 111, no. 10 (September 2013). doi:10.1103/PhysRevLett.111.107802.
  • Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
  • Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.

encyclopedia

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'dessin'}, {'LEMMA': "d'enfant"}]