Dual reductive pair

수학노트
둘러보기로 가기 검색하러 가기

introduciton

  • In the mid-1970s, Howe introduced the notion of dual pairs in \(Mp(W)\): these are subgroups of \(Mp(W)\) of the form \(G \times H\) where \(G\) and \(H\) are mutual centralisers of each other.
  • He gave a classification and construction of all such possible dual pairs. They basically take the following form:
  • (i) if \(U\) is a quadratic space with corresponding orthogonal group \(O(U)\) and \(V\) a symplectic space with corresponding metaplectic group \(Mp(V)\), then \(W = U \otimes V\) is naturally a symplectic space, and \(O(U)\times Mp(V)\) is a dual pair in \(Mp(W) = Mp(U \otimes V)\).
  • (ii) \(U(V)\times U(V')\), where \(V\) and \(V'\) are Hermitian and skew-Hermitian spaces respectively for a quadratic extension \(E/F\).
  • (iii) \(GL(U) \times GL(V)\), where \(U\) and \(V\) are vector spaces over \(F\).
  • The dual pairs in (i) and (ii) are called Type I dual pairs, while those in (iii) are called Type II.

Type II dual pairs

  • It is particularly easy to describe the Weil representation \(\Omega\) for Type II dual pairs.
  • The group \(GL(U) \times GL(V)\) acts naturally on \(U \otimes V\) and hence on the space \(S(U \otimes V)\) of Schwarz functions: this is the Weil representation \(\Omega\).


related items

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'reductive'}, {'LOWER': 'dual'}, {'LEMMA': 'pair'}]