# Ramanujan-Göllnitz-Gordon 연분수

이동: 둘러보기, 검색

## 개요

• Göllnitz$1+q+{q^{2} \over 1+q^{3} + } {q^{4} \over 1+q^{5}+} {q^{6} \over \cdots}=\frac{(q^{3};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}{(q^{1};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}=\frac{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}$
• [Gordon1965]

$1+{q \over 1+q^2 + } {q^3 \over 1+q^4+} {q^5 \over 1+q^6} \cdots=\frac{(q^{2};q^{8})_{\infty}(q^{3};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{1};q^{8})_{\infty}(q^{5};q^{8})_{\infty}(q^{6};q^{8})_{\infty}}$

## 라마누잔의 결과

• Berndt, notebook V entry 22 p. 50${1 \over 1+} {q+q^2 \over 1+} {q^4 \over 1+} {q^3+q^6 \over 1+}{q^8 \over 1+\cdots} =\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}$

## 모듈라 함수

• fractional power

${q^{1/2} \over 1+q+} {q^2 \over 1+q^3 + } {q^4 \over 1+q^5 + } {q^6 \over 1+q^7+\cdots} =q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}$

• [Duke2005] (9.4)