"방정식과 대칭성 : 치환군"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 방정식과 대칭성 : 치환군로 바꾸었습니다.)
9번째 줄: 9번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
*  군이란 어떤 불변성을 가진 대상에 대한 ‘변화’들의 모임<br>
+
*  군이란 어떤 불변성을 가진 대상에 대한 ‘변화’들의 모임을 말한다<br>
 
** 군론에 대해서는 [[고교생도 이해할 수 있는 군론 입문]]  항목을 참조
 
** 군론에 대해서는 [[고교생도 이해할 수 있는 군론 입문]]  항목을 참조
 
* 군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐지만 해가 만족시키는 방정식은 변하지 않는다.
 
* 군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐지만 해가 만족시키는 방정식은 변하지 않는다.
16번째 줄: 16번째 줄:
 
** <math>\sigma(i)=-i, \sigma(-i)=i</math>에서 방정식 <math>x^2+1=0</math>의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음<br>
 
** <math>\sigma(i)=-i, \sigma(-i)=i</math>에서 방정식 <math>x^2+1=0</math>의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음<br>
 
* [[갈루아 이론]] 은 [[5차방정식과 근의 공식]] 문제를 풀기 위해 방정식의 해가 가지는 대칭성에 대한 연구로부터 시작되었다<br>
 
* [[갈루아 이론]] 은 [[5차방정식과 근의 공식]] 문제를 풀기 위해 방정식의 해가 가지는 대칭성에 대한 연구로부터 시작되었다<br>
** [[5차방정식의 근의 공식과 갈루아 이론]]
+
** [[5차방정식의 근의 공식과 갈루아 이론]]
  
 
 
 
 
74번째 줄: 74번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
<h5></h5>
 +
 
 +
방정식의 해를 요리조리 결합시키는 과정을 체계적으로 생각하는데서, 바로 군론의 아이디어가 싹트게 된다. 오늘은 그에 대한 이야기이다.
 +
 
 +
 
 +
 
 +
<math>z^4+z^3+z^2+z^1+1=0</math>의 네 해는 다음과 같다는 것을 지난 번에 보였다.
 +
 
 +
 
 +
 
 +
<math>\alpha_1=\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)=\zeta</math>
 +
 
 +
 
 +
 
 +
<math>\alpha_2=\frac{1}{4} \left(-1-\sqrt{5}+i \sqrt{10-2 \sqrt{5}}\right)=\zeta^2</math>
 +
 
 +
 
 +
 
 +
<math>\alpha_3=\frac{1}{4} \left(-1-\sqrt{5}-i \sqrt{10-2 \sqrt{5}}\right)=\zeta^3</math>
 +
 
 +
 
 +
 
 +
<math>\alpha_4=\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)=\zeta^4</math>
 +
 
 +
 
 +
 
 +
여기서 <math>\zeta=e^{2\pi i \over 5}=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}</math>.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
이제 치환이라는 말을 정의하자. 치환이란 우리의 경우에는 네 개의 원소로 구성된 집합 <math>\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}</math>에 정의되는 전단사함수를 말한다. <math>\alpha_1</math>을 <math>\alpha_3</math>으로 보내고, <math>\alpha_3</math>을 <math>\alpha_1</math>로 보내고, <math>\alpha_2</math>와 <math>\alpha_4</math>는 그대로 두는 치환을 간단히 다음과 같이 쓰자.
 +
 
 +
 
 +
 
 +
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 &  4\end{pmatrix}</math>
 +
 
 +
 
 +
 
 +
'''방정식의 해의 치환군은 해의 위치를 서로 바꿔주는 치환 중에서, 해들이 만족시키는 방정식의 대수적관계 (더 정확히는 유리계수다항식) 를 보존하는 것들로 정의'''된다.
 +
 
 +
 
 +
 
 +
가령 위의 네 해는 <math>\alpha_1\alpha_4=\alpha_2\alpha_3=1</math>, <math>\alpha_1^2\alpha_3=1</math>와 같은 대수적관계들을 만족시킨다. 그러면 치환군의 원소는 어떤 것들이 있을지 생각해볼 수 있겠다.
 +
 
 +
 
 +
 
 +
<math>\tau=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 &  4\end{pmatrix}</math> 는 치환군의 원소가 될 수 없는데, <math>\alpha_1\alpha_4=1</math> 임에 반하여, <math>\tau(\alpha_1)\tau(\alpha_4)=\alpha_2\alpha_4\neq 1</math>이기 때문이다.(<math>\alpha_i=\zeta^i</math> 임을 기억하자)
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<math>\alpha_1\alpha_4=\alpha_2\alpha_3=1</math>라는 조건으로부터, <math>\{1,4\}</math>와 <math>\{2,3\}</math> 이 쌍으로 움직여야 한다는 것을 알 수 있다. 따라서 다음과 같은 치환들만이 치환군의 원소 후보가 될 수 있다.
 +
 
 +
 
 +
 
 +
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 &  3\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math> ,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 &  1\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>
 +
 
 +
 
 +
 
 +
그러나 여기서 <math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 &  4\end{pmatrix}</math>와 같은 경우는 치환군의 원소가 될 수 없는데,  <math>\alpha_1^2\alpha_3=1</math> 임에 반하여, <math>\tau(\alpha_1)^2\tau(\alpha_3)=\alpha_1^2\alpha_2\neq 1</math>이기 때문이다.(<math>\alpha_i=\zeta^i</math> 이므로)
 +
 
 +
 
 +
 
 +
 
 +
 
 +
결국엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.
 +
 
 +
 
 +
 
 +
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math> ,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math>는 함수이므로, 이 녀석의 제곱이란 함수의 합성으로 이해할 수 있다.
 +
 
 +
 
 +
 
 +
<math>\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 &  3\end{pmatrix}</math> 로 두면,<math>\sigma^2= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>,  <math>\sigma^3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 &  2\end{pmatrix}</math>, <math>\sigma^4=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math> 가 되어, 모든 원소가 <math>\sigma</math>로부터 얻어지게 된다.
 +
 
 +
 
 +
 
 +
즉 친숙한 군 {차렷, 좌향좌, 우향우, 뒤로돌아}와 비교하자면, <math>\sigma</math>는 좌향좌 또는 우향우와 같은 역할을 방정식의 해에 대하여 하고 있다. 크기가 4인 [[순환군]]이 된다.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>예</h5>
 +
 
 +
 
 +
 
 +
<math>x^4 - 10x^2 + 1=0</math>의 네 해는 다음과 같이 주어진다.
 +
 
 +
 
 +
 
 +
<math>\alpha_1 = \sqrt{2} + \sqrt{3}</math>
 +
 
 +
 
 +
 
 +
<math>\alpha_2 = \sqrt{2} - \sqrt{3}</math>
 +
 
 +
 
 +
 
 +
<math>\alpha_3 = -\sqrt{2} + \sqrt{3}</math>
 +
 
 +
 
 +
 
 +
<math>\alpha_4= -\sqrt{2} - \sqrt{3}</math>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
이 경우엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.
  
 
 
 
 
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}</math> ,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 &  2\end{pmatrix}</math>,<math>\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}</math>
* [[수학사연표 (역사)|수학사연표]]
 
  
 
 
 
 
 +
 +
그런데
  
 
 
 
 
  
<h5>메모</h5>
+
<math>x=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}</math>로 쓰면, <math>x^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>
  
* [http://www.ted.com/talks/marcus_du_sautoy_symmetry_reality_s_riddle.html Marcus du Sautoy: Symmetry, reality's riddle]
+
 
* TED 강연
 
  
* Math Overflow http://mathoverflow.net/search?q=
+
<math>y=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 &  2\end{pmatrix}</math>로 쓰면, <math>y^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>
  
 
 
 
 
 +
 +
<math>z=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 &  1\end{pmatrix}</math>로 쓰면, <math>z^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 &  4\end{pmatrix}</math>
  
 
 
 
 
  
<h5>관련된 항목들</h5>
+
로 모두 제곱하면 항등원이 되어버리므로, 이 군은 절대로 {차렷, 좌향좌, 우향우, 뒤로돌아}와 같은 구조를 가질 수 없음을 알게 된다.
  
* [[갈루아 이론]]
+
 
  
 
 
 
 
104번째 줄: 226번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
방정식 <math>z^4+z^3+z^2+z^1+1=0</math>와 <math>x^4 - 10x^2 + 1=0</math> 는 뭔가 질적으로 다르다는 것을 이 치환군은 말해주고 있다.
  
*  단어사전<br>
+
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
122번째 줄: 236번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
<h5>역사</h5>
  
* http://ko.wikipedia.org/wiki/
+
 
* http://en.wikipedia.org/wiki/
+
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
+
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
+
* [[수학사연표 (역사)|수학사연표]]
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
  
 
 
 
 
134번째 줄: 247번째 줄:
 
 
 
 
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
<h5>메모</h5>
 +
 
 +
* [http://bomber0.byus.net/index.php/2009/11/01/1603 5차방정식의 근의 공식은 왜 없을까 (4) : 방정식의 해와 치환군]
 +
* [http://www.ted.com/talks/marcus_du_sautoy_symmetry_reality_s_riddle.html Marcus du Sautoy: Symmetry, reality's riddle]
 +
* TED 강연
 +
 
 +
* Math Overflow http://mathoverflow.net/search?q=
  
 
 
 
 
  
 
 
 
 
 +
 +
<h5>관련된 항목들</h5>
 +
 +
* [[갈루아 이론]]
  
 
 
 
 
  
<h5>관련논문</h5>
+
 
  
* http://www.jstor.org/action/doBasicSearch?Query=
+
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
 
 

2012년 1월 11일 (수) 05:19 판

이 항목의 수학노트 원문주소

 

 

개요
  • 군이란 어떤 불변성을 가진 대상에 대한 ‘변화’들의 모임을 말한다
  • 군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐지만 해가 만족시키는 방정식은 변하지 않는다.
  • 이것이 바로 ‘변화속의불변’ – 대칭성이다.
  • \(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma}\}\)의 경우 \(\sigma\)는 복소수체의 실수체 \(\mathbb{R}\)의 원소를 변화시키지 않음.
    • \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음
  • 갈루아 이론5차방정식과 근의 공식 문제를 풀기 위해 방정식의 해가 가지는 대칭성에 대한 연구로부터 시작되었다

 

 

간단한 예

실계수 방정식 \(x^2+1=0\) 에 대하여 생각해보자. 이 방정식은 실수 내에서는 해를 가지지 않으며, 해를 얻기 위해서는 허수라는 것을 실수에 집어넣어 실수를 복소수로 확장하는 작업이 필요하다. (유식한 말을 약간 사용하자면, 복소수체 \(\mathbb{C}\) 는 실수체 \(\mathbb{R}\)의 체확장이라 한다)  이 방정식은 복소수 내에서 두 개의 해 \(\{i,-i\}\)를 가진다.

 

이제 켤레복소수에 대해 생각해볼 차례이다. 복소수 \(\alpha+\beta i\) (\(\alpha, \beta\)는 실수) 에 대하여 복소수 \(\alpha-\beta i\)를 켤레복소수라 한다. \(\alpha+\beta i\)의 켤레복소수를 취하여 \(\alpha-\beta i\)를 얻는데, 여기서 또한번 켤레복소수를 취하면 다시 \(\alpha+\beta i\) 를 얻게 된다. 복소수를 켤레복소수로 보내는 함수를  \(\sigma(z)=\bar{z}\) 라고 표현한다면, \(\sigma^2(z)=\bar{\bar{z}}=z\)가 된다. 이를 간략하게 쓰자면 \(\sigma^2=\operatorname{id}\) , 즉 켤레복소수를 취하는 것을 함수로 보아 자기자신과 합성을 하면 항등함수를 얻게 된다는 것이다.

 

여기서 원소 두 개짜리 군 \(\{\operatorname{id}, \sigma}\}\) 을 얻는다. 이를 유식하게는\(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma}\}\) 라고 하지만, 차차 알아가도록 하자.

 

지금 방정식 \(x^2+1=0\)과 그 해집합 \(\{i,-i\}\) 그리고 복소수를 복소수로 보내주는 두 함수, 항등함수와 켤레복소수 함수로 만들어진 군 \(\{\operatorname{id}, \sigma}\}\)가 있다.

 

켤레복소수에 의하면,  \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 서로 위치를 바꾸는 것을 볼 수 있다.

 

군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐다. 그러나 그 둘이 만족시키는 방정식 \(x^2+1=0\) 은 변하지 않는다. 이것이 바로 ‘변화속의불변’ – 대칭성이다. 한 방정식의 모든 해는 서로 변해도, 그들은 모두 여전히 같은 방정식을 만족시킨다.

 

 

 

일반화

(정리)

주어진 체 \(F\)에 대하여, \(F\)의 원소들로 계수가 구성된 기약인 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이면,  위에서처럼 해\(\alpha = \alpha_1,\cdots.\alpha_n\)를 모두 추가하여 만든 체확장 \(K=F(\alpha_1,\cdots,\alpha_n)\)의 갈루아군 \(\text{Gal}(K/F)\) 의 원소 \(\sigma\)에 대하여 \(\sigma(\alpha)\) 도 같은 방정식의 해가 된다.

(증명)

\(\alpha \)는 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이므로, \(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0 = 0\).

\(\sigma\in\text{Gal}(K/F)\)에 대하여 \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)= \sigma(0)=0\) 이다.

그런데 \(\sigma\in\text{Gal}(K/F)\) 는 사칙연산을 보존하며 체 \(F\)의 원소들을 변화시키지 않으므로, \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)=a_n \sigma(\alpha)^n + a_{n-1} \sigma(\alpha)^{n-1} + a_{n-2} \sigma(\alpha)^{n-2} + \cdots + a_1 \sigma(\alpha) + a_0 = 0\)

을 만족시킨다.

따라서 \(\sigma(\alpha)\)도 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해가 된다. ■

 

 

방정식의 해를 요리조리 결합시키는 과정을 체계적으로 생각하는데서, 바로 군론의 아이디어가 싹트게 된다. 오늘은 그에 대한 이야기이다.

 

\(z^4+z^3+z^2+z^1+1=0\)의 네 해는 다음과 같다는 것을 지난 번에 보였다.

 

\(\alpha_1=\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)=\zeta\)

 

\(\alpha_2=\frac{1}{4} \left(-1-\sqrt{5}+i \sqrt{10-2 \sqrt{5}}\right)=\zeta^2\)

 

\(\alpha_3=\frac{1}{4} \left(-1-\sqrt{5}-i \sqrt{10-2 \sqrt{5}}\right)=\zeta^3\)

 

\(\alpha_4=\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)=\zeta^4\)

 

여기서 \(\zeta=e^{2\pi i \over 5}=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}\).

 

 

이제 치환이라는 말을 정의하자. 치환이란 우리의 경우에는 네 개의 원소로 구성된 집합 \(\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}\)에 정의되는 전단사함수를 말한다. \(\alpha_1\)을 \(\alpha_3\)으로 보내고, \(\alpha_3\)을 \(\alpha_1\)로 보내고, \(\alpha_2\)와 \(\alpha_4\)는 그대로 두는 치환을 간단히 다음과 같이 쓰자.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}\)

 

방정식의 해의 치환군은 해의 위치를 서로 바꿔주는 치환 중에서, 해들이 만족시키는 방정식의 대수적관계 (더 정확히는 유리계수다항식) 를 보존하는 것들로 정의된다.

 

가령 위의 네 해는 \(\alpha_1\alpha_4=\alpha_2\alpha_3=1\), \(\alpha_1^2\alpha_3=1\)와 같은 대수적관계들을 만족시킨다. 그러면 치환군의 원소는 어떤 것들이 있을지 생각해볼 수 있겠다.

 

\(\tau=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{pmatrix}\) 는 치환군의 원소가 될 수 없는데, \(\alpha_1\alpha_4=1\) 임에 반하여, \(\tau(\alpha_1)\tau(\alpha_4)=\alpha_2\alpha_4\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 임을 기억하자)

 

 

\(\alpha_1\alpha_4=\alpha_2\alpha_3=1\)라는 조건으로부터, \(\{1,4\}\)와 \(\{2,3\}\) 이 쌍으로 움직여야 한다는 것을 알 수 있다. 따라서 다음과 같은 치환들만이 치환군의 원소 후보가 될 수 있다.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

 

그러나 여기서 \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\)와 같은 경우는 치환군의 원소가 될 수 없는데,  \(\alpha_1^2\alpha_3=1\) 임에 반하여, \(\tau(\alpha_1)^2\tau(\alpha_3)=\alpha_1^2\alpha_2\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 이므로)

 

 

결국엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

 

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\)는 함수이므로, 이 녀석의 제곱이란 함수의 합성으로 이해할 수 있다.

 

\(\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) 로 두면,\(\sigma^2= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\),  \(\sigma^3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\), \(\sigma^4=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\) 가 되어, 모든 원소가 \(\sigma\)로부터 얻어지게 된다.

 

즉 친숙한 군 {차렷, 좌향좌, 우향우, 뒤로돌아}와 비교하자면, \(\sigma\)는 좌향좌 또는 우향우와 같은 역할을 방정식의 해에 대하여 하고 있다. 크기가 4인 순환군이 된다.

 

 

 

\(x^4 - 10x^2 + 1=0\)의 네 해는 다음과 같이 주어진다.

 

\(\alpha_1 = \sqrt{2} + \sqrt{3}\)

 

\(\alpha_2 = \sqrt{2} - \sqrt{3}\)

 

\(\alpha_3 = -\sqrt{2} + \sqrt{3}\)

 

\(\alpha_4= -\sqrt{2} - \sqrt{3}\)

 

 

 

이 경우엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

 

그런데

 

\(x=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\)로 쓰면, \(x^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

 

\(y=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\)로 쓰면, \(y^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

 

\(z=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)로 쓰면, \(z^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

 

로 모두 제곱하면 항등원이 되어버리므로, 이 군은 절대로 {차렷, 좌향좌, 우향우, 뒤로돌아}와 같은 구조를 가질 수 없음을 알게 된다.

 

 

 

방정식 \(z^4+z^3+z^2+z^1+1=0\)와 \(x^4 - 10x^2 + 1=0\) 는 뭔가 질적으로 다르다는 것을 이 치환군은 말해주고 있다.

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

 

 

 

관련도서