"생성함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
141번째 줄: 141번째 줄:
 
블로그
 
블로그
  
* 구글 블로그 검색<br>
+
* [http://bomber0.byus.net/index.php/2007/09/30/452 고교 수학의 명장면 (2)]<br>
 +
** 피타고라스의 창, 2008-9-30
 +
* [http://bomber0.byus.net/index.php/2008/07/26/696 derangement : 목욕탕에서 서로 등을 밀어주는 경우의 수와 자연상수]<br>
 +
** 피타고라스의 창, 2008-7-26
 +
 
 +
구글 블로그 검색<br>
 +
** [http://blogsearch.google.com/blogsearch?q=%EC%83%9D%EC%84%B1%ED%95%A8%EC%88%98 http://blogsearch.google.com/blogsearch?q=생성함수]
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
147번째 줄: 153번째 줄:
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 
* [http://betterexplained.com/ BetterExplained]
 
* [http://bomber0.byus.net/index.php/2007/09/30/452 고교 수학의 명장면 (2)]<br>
 
** 피타고라스의 창, 2008-9-30
 
* [http://bomber0.byus.net/index.php/2008/07/26/696 derangement : 목욕탕에서 서로 등을 밀어주는 경우의 수와 자연상수]<br>
 
** 피타고라스의 창, 2008-7-26
 

2012년 8월 25일 (토) 14:37 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 생성함수(generating function)
  • 수열\(\{a_n\}\)에 대한 정보를 담는 멱급수
  • 다양한 종류의 생성함수가 있으며 수열의 성질에 따라 적합한 종류의 생성함수를 이용한다
  • 해석적정수론의 중요한 아이디어
  • 수열이라는 이산적인 대상을, 미적분학이라는 연속적인 개념을 이용하는 도구를 통해 다룰수 있게 해줌.
  • L-함수, 제타함수와 디리클레 급수로 생성함수의 일종으로 이해할 수 있음
  • 확률론에서 확률변수를 다루는데 유용한 도구

 

 

생성함수
  • 수열 \(\{a_n\}\)이 주어진 경우,'다음과 같은 멱급수함수를 하나 만든다. (유한수열인 경우에는 다항식)'
    '''''''\(G(x)= a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots\)'''''''

 

 

지수생성함수
  • 수열 \(\{a_n\}\)이 주어진 경우,'다음과 같은 멱급수함수를 지수생성함수라 한다'
    \(EG(x)=\sum _{n=0}^{\infty} \frac{a_n}{n!}x^n\)
  • 베르누이 수의 생성함수
    \(\sum_{n=0}^\infty \frac{B_n}{n!}t^n=\frac{t e^{t}}{e^t-1}\)
  • derangement의 생성함수
    \(\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n=\frac{e^{-x}}{1-x}\)

 

 

디리클레급수

 

 

자코비 세타함수의 경우
  • 자코비 세타함수
    \(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}\)
  • 주어진 자연수를 여러 제곱의 합으로 표현하는 방법에 유용하게 사용된다
  • 가령 자코비의 네 제곱수 정리의 경우
    \(\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\)

 

 

확률론과 생성함수
  • probability generating function
  • moment generating function
  • characteristic function

 

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

표준적인 도서 및 추천도서

 

 

관련논문과 에세이

 

 

블로그