"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
* [http://en.wikipedia.org/wiki/Timeline_of_mathematics 페르마의 마지막 정리] 참조
 
* [http://en.wikipedia.org/wiki/Timeline_of_mathematics 페르마의 마지막 정리] 참조
 +
 +
 
  
 
 
 
 
28번째 줄: 30번째 줄:
 
* [http://en.wikipedia.org/wiki/1693 1693] - [http://en.wikipedia.org/wiki/Edmund_Halley Edmund Halley] prepares the first mortality tables statistically relating death rate to age,
 
* [http://en.wikipedia.org/wiki/1693 1693] - [http://en.wikipedia.org/wiki/Edmund_Halley Edmund Halley] prepares the first mortality tables statistically relating death rate to age,
 
* [http://en.wikipedia.org/wiki/1696 1696] - [http://en.wikipedia.org/wiki/Guillaume_Fran%C3%A7ois_Antoine,_Marquis_de_l%27H%C3%B4pital Guillaume de L'Hôpital] states [http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule his rule] for the computation of certain [http://en.wikipedia.org/wiki/Limit_%28mathematics%29 limits],
 
* [http://en.wikipedia.org/wiki/1696 1696] - [http://en.wikipedia.org/wiki/Guillaume_Fran%C3%A7ois_Antoine,_Marquis_de_l%27H%C3%B4pital Guillaume de L'Hôpital] states [http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule his rule] for the computation of certain [http://en.wikipedia.org/wiki/Limit_%28mathematics%29 limits],
* [http://en.wikipedia.org/wiki/1696 1696] - 자콥 베르누이와 요한 베르누이가 최단강하곡선 ㅁ [http://en.wikipedia.org/wiki/Brachistochrone_curve brachistochrone problem], the first result in the [http://en.wikipedia.org/wiki/Calculus_of_variations calculus of variations],
+
* 1696 - 자콥 베르누이와 요한 베르누이가 최단강하곡선 문제를 해결함. the first result in the [http://en.wikipedia.org/wiki/Calculus_of_variations calculus of variations],
 +
 
 +
 
 +
 
 +
 
  
  
58번째 줄: 64번째 줄:
  
  
 +
 +
 
 +
 +
 
  
 
=== 19세기 ===
 
=== 19세기 ===
79번째 줄: 89번째 줄:
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
 
* 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[#|페르마의 마지막 정리]]를 증명
 
* 1832 - 디리클레가 <em style="">n</em> = 14인 경우의 [[#|페르마의 마지막 정리]]를 증명
* 1835 - 디리클레가 [[#|등차수열의 소수분포에 관한 디리클레 정리]]를 증명
+
* 1837 - 디리클레가 [[#|등차수열의 소수분포에 관한 디리클레 정리]]를 증명
 
* 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
 
* 1837 - 피에르 완첼([http://en.wikipedia.org/w/index.php?title=Pierre_Wantsel&action=edit&redlink=1 Pierre Wantsel])이 [[#|두배의 부피를 갖는 정육면체(The duplication of the cube)]]과 [[#|각의 3등분(The trisection of an angle)]] 문제가 자와 컴파스로 해결불가능임을 증명, as well as the full completion of the problem of constructability of regular polygons
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
 
* [http://en.wikipedia.org/wiki/1841 1841] - [http://en.wikipedia.org/wiki/Karl_Weierstrass Karl Weierstrass] discovers but does not publish the [http://en.wikipedia.org/wiki/Laurent_expansion_theorem Laurent expansion theorem],
110번째 줄: 120번째 줄:
  
  
 +
 +
 
  
 
=== 20세기 ===
 
=== 20세기 ===
137번째 줄: 149번째 줄:
 
* [http://en.wikipedia.org/wiki/1943 1943] - [http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1 Kenneth Levenberg] proposes a method for nonlinear least squares fitting,
 
* [http://en.wikipedia.org/wiki/1943 1943] - [http://en.wikipedia.org/w/index.php?title=Kenneth_Levenberg&action=edit&redlink=1 Kenneth Levenberg] proposes a method for nonlinear least squares fitting,
 
* [http://en.wikipedia.org/wiki/1948 1948] - John von Neumann mathematically studies self-reproducing machines,
 
* [http://en.wikipedia.org/wiki/1948 1948] - John von Neumann mathematically studies self-reproducing machines,
* [http://en.wikipedia.org/wiki/1949 1949] - John von Neumann computes π to 2,037 decimal places using [http://en.wikipedia.org/wiki/ENIAC ENIAC],
+
* [http://en.wikipedia.org/wiki/1949 1949] - 폰노이만이 에니악을 이용하여 파이를 소수점 2,037 자리까지 계산함
 
* [http://en.wikipedia.org/wiki/1950 1950] - Stanislaw Ulam and John von Neumann present [http://en.wikipedia.org/wiki/Cellular_automata cellular automata] dynamical systems,
 
* [http://en.wikipedia.org/wiki/1950 1950] - Stanislaw Ulam and John von Neumann present [http://en.wikipedia.org/wiki/Cellular_automata cellular automata] dynamical systems,
 
* [http://en.wikipedia.org/wiki/1953 1953] - [http://en.wikipedia.org/wiki/Nicholas_Metropolis Nicholas Metropolis] introduces the idea of thermodynamic [http://en.wikipedia.org/wiki/Simulated_annealing simulated annealing] algorithms,
 
* [http://en.wikipedia.org/wiki/1953 1953] - [http://en.wikipedia.org/wiki/Nicholas_Metropolis Nicholas Metropolis] introduces the idea of thermodynamic [http://en.wikipedia.org/wiki/Simulated_annealing simulated annealing] algorithms,

2009년 11월 17일 (화) 17:20 판

 

 

17세기

 

 


18세기


 

 

19세기


 

20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상