"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
52번째 줄: 52번째 줄:
 
* [http://en.wikipedia.org/wiki/1735 1735] - 오일러 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
 
* [http://en.wikipedia.org/wiki/1735 1735] - 오일러 바젤 문제를 해결함 [[#|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
 
* [http://en.wikipedia.org/wiki/1736 1736] - Leonhard Euler solves the problem of the [http://en.wikipedia.org/wiki/Seven_bridges_of_K%C3%B6nigsberg Seven bridges of Königsberg], in effect creating [http://en.wikipedia.org/wiki/Graph_theory graph theory],
 
* [http://en.wikipedia.org/wiki/1736 1736] - Leonhard Euler solves the problem of the [http://en.wikipedia.org/wiki/Seven_bridges_of_K%C3%B6nigsberg Seven bridges of Königsberg], in effect creating [http://en.wikipedia.org/wiki/Graph_theory graph theory],
* [http://en.wikipedia.org/wiki/1739 1739] - Leonhard Euler solves the general [http://en.wikipedia.org/w/index.php?title=Homogeneous_linear_ordinary_differential_equation&action=edit&redlink=1 homogeneous linear ordinary differential equation] with [http://en.wikipedia.org/wiki/Constant_coefficients constant coefficients],
+
* [http://en.wikipedia.org/wiki/1739 1739] - 오일러가 [[상수계수 이계 선형미분방정식|상수계수 선형미분방정식]]es the general [http://en.wikipedia.org/w/index.php?title=Homogeneous_linear_ordinary_differential_equation&action=edit&redlink=1 homogeneous linear ordinary differential equation] with [http://en.wikipedia.org/wiki/Constant_coefficients constant coefficients],
 
* [http://en.wikipedia.org/wiki/1742 1742] - [http://en.wikipedia.org/wiki/Christian_Goldbach Christian Goldbach] conjectures that every even number greater than two can be expressed as the sum of two primes, now known as [http://en.wikipedia.org/wiki/Goldbach%27s_conjecture Goldbach's conjecture],
 
* [http://en.wikipedia.org/wiki/1742 1742] - [http://en.wikipedia.org/wiki/Christian_Goldbach Christian Goldbach] conjectures that every even number greater than two can be expressed as the sum of two primes, now known as [http://en.wikipedia.org/wiki/Goldbach%27s_conjecture Goldbach's conjecture],
 
* [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>,
 
* [http://en.wikipedia.org/wiki/1748 1748] - [http://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi Maria Gaetana Agnesi] discusses analysis in <em style="">Instituzioni Analitiche ad Uso della Gioventu Italiana</em>,
106번째 줄: 106번째 줄:
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]]
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]]
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스ㄱ [http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius] presents his method for finding series solutions to linear differential equations with [http://en.wikipedia.org/wiki/Regular_singular_point regular singular points],
+
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스([http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius])가 [[정규특이점(regular singular points)]]을 가지는 선형미분방정식의 급수해 찾는 방법을 소개함
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions<br>
 
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions<br>

2010년 8월 13일 (금) 10:37 판

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상