"슈르 다항식(Schur polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
44번째 줄: 44번째 줄:
  
 
==영 태블로==
 
==영 태블로==
* 영 태블로를 이용한 슈르 다항식의 표현
+
* [[태블로(Young tableau)]]를 이용한 슈르 다항식의 표현
 
:<math>s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)</math>
 
:<math>s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)</math>
 
여기서 T는 semistandard 영 태블로  of shape λ  
 
여기서 T는 semistandard 영 태블로  of shape λ  

2012년 12월 11일 (화) 09:31 판

이 항목의 수학노트 원문주소

 

 

개요



정의

  • 변수의 개수 n과 d의 (0을 허용하는 크기가 n인) 분할(partition)이 \(\lambda\)가 주어지면 d차 다항식 \( s_\lambda(x_1,\ldots,x_n)\) 이 결정된다
  • 다음과 같은 두 개의 분할을 생각하자
    • \(\rho : n-1,n-2,\cdots, 0\)
    • d의 (크기가 n인) 분할 \[\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\]
  • 다음과 같이 $n\times n$ 행렬의 행렬식으로 두 다항식을 정의하자

\[a_{\lambda+\rho}=\operatorname{det}(x_{i}^{\lambda_{j}+n-j})_{1\le i,j\le n}\] \[a_{\rho}=\operatorname{det}(x_{i}^{n-j})_{1\le i,j\le n}\label{van}\]

 

  • 변수의 개수가 3이고, 4의 분할인 경우의 슈르 다항식

\[ \left( \begin{array}{cc} \{4,0,0,0\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+\left(x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3\right) x_3+\left(x_1^2+x_1 x_2+x_2^2\right) x_3^2+\left(x_1+x_2\right) x_3^3+x_3^4 \\ \{3,1,0,0\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_1^3 x_3+2 x_1^2 x_2 x_3+2 x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+2 x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3 \\ \{2,2,0,0\} & x_1^2 x_2^2+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2 \\ \{2,1,1,0\} & x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2 \\ \{1,1,1,1\} & 0 \end{array} \right) \]

 

 

 

영 태블로

\[s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)\] 여기서 T는 semistandard 영 태블로 of shape λ

 

 

The first Giambelli formula (Jacobi-Trudy 항등식)

  • 슈르 다항식은 완전 동차 대칭 다항식 (complete homogeneous symmetric polynomial)의 다항식으로 표현할 수 있다
  • \(s_{\lambda} = \operatorname{det}(h_{\lambda_{i}-i+j})\)
  • 변수가 3인 경우의 complete homogeneous polynomial은 다음과 같다 \[\left( \begin{array}{cc} h_1 & x_1+x_2+x_3 \\ h_2 & x_1^2+x_1 x_2+x_2^2+x_1 x_3+x_2 x_3+x_3^2 \\ h_3 & x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3+x_1^2 x_3+x_1 x_2 x_3+x_2^2 x_3+x_1 x_3^2+x_2 x_3^2+x_3^3 \\ h_4 & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \end{array} \right)\]
  • 예. \[s_{(2,1,1)}(x_1,x_2,x_3)=h_1^2 h_2-h_2^2-h_1 h_3+h_4\]

 

 

역사

 

 

 

메모

 

 

관련된 항목들


 

매스매티카 파일 및 계산 리소스

 

 

수학용어번역

  • 표준, standard - 대한수학회 수학용어집
  • 준,반, semi - 대한수학회 수학용어집

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트