"스토크스 정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
8번째 줄: | 8번째 줄: | ||
* 스토크스 정리<br><math>\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}</math><br> | * 스토크스 정리<br><math>\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}</math><br> | ||
− | * | + | * cycle위2-form 과 1-form<br> |
19번째 줄: | 19번째 줄: | ||
* 3차원의 매개곡면 S : <math>\mathbf{x} (s,t)=( x(s,t), y(s,t), z(s,t))</math>, <math>(s,t)\in D</math> | * 3차원의 매개곡면 S : <math>\mathbf{x} (s,t)=( x(s,t), y(s,t), z(s,t))</math>, <math>(s,t)\in D</math> | ||
− | * | + | * 미분형식과 미분형식의 적분에 대해서는 [[미분형식 (differential forms)과 다변수 미적분학|미분형식 (differential forms)과 multilinear algebra]] 항목을 참조 |
− | + | * 1-형식 <math>\omega=P\, {d}x + Q\, {d}y+R\,dz</math>는 벡터장 <math>\mathbf{F}=(P,Q,R)</math>과 대응 | |
− | * <br> | + | * 2-형식 <math>d\omega= (R_y-Q_x)\, dy \wedge dz + (P_z-R_x)\, dz \wedge dx+(Q_y-P_x)\, dx \wedge dy</math> 는 벡터장 <math>\nabla\times\mathbf{F}=(R_y-Q_x,P_z-R_x,Q_y-P_x)</math>과 대응 |
+ | * 스토크스 정리<br> <br> | ||
2010년 11월 30일 (화) 18:49 판
이 항목의 스프링노트 원문주소
개요
- 스토크스 정리
\(\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}\) - cycle위2-form 과 1-form
미분형식을 통한 서술
- 3차원의 매개곡면 S \[\mathbf{x} (s,t)=( x(s,t), y(s,t), z(s,t))\], \((s,t)\in D\)
- 미분형식과 미분형식의 적분에 대해서는 미분형식 (differential forms)과 multilinear algebra 항목을 참조
- 1-형식 \(\omega=P\, {d}x + Q\, {d}y+R\,dz\)는 벡터장 \(\mathbf{F}=(P,Q,R)\)과 대응
- 2-형식 \(d\omega= (R_y-Q_x)\, dy \wedge dz + (P_z-R_x)\, dz \wedge dx+(Q_y-P_x)\, dx \wedge dy\) 는 벡터장 \(\nabla\times\mathbf{F}=(R_y-Q_x,P_z-R_x,Q_y-P_x)\)과 대응
- 스토크스 정리
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- Earliest Known Uses of Some of the Words of Mathematics
- Earliest Uses of Various Mathematical Symbols
- 수학사연표
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- The History of Stokes' Theorem
- Victor J. Katz, Mathematics Magazine Vol. 52, No. 3 (May, 1979), pp. 146-156
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)