스토크스 정리
둘러보기로 가기
검색하러 가기
개요
- 스토크스 정리
- 유향곡면 S 위에 정의된 벡터장 F 에 대하여 다음이 성립한다\[\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}\]
- cycle위에서의 2-form 과 1-form의 적분으로 서술할 수 있다
미분형식을 통한 서술
- 3차원의 매개곡면 S \[\mathbf{x} (s,t)=( x(s,t), y(s,t), z(s,t))\], \((s,t)\in D\)
- 미분형식과 미분형식의 적분에 대해서는 미분형식 (differential forms)과 multilinear algebra 항목을 참조
- 1-형식 \(\omega=P\, {d}x + Q\, {d}y+R\,dz\)는 벡터장 \(\mathbf{F}=(P,Q,R)\)과 대응
- 2-형식 \(d\omega= (R_y-Q_x)\, dy \wedge dz + (P_z-R_x)\, dz \wedge dx+(Q_y-P_x)\, dx \wedge dy\) 는 벡터장 \(\nabla\times\mathbf{F}=(R_y-Q_x,P_z-R_x,Q_y-P_x)\)과 대응
- 스토크스 정리\[\int_S d\omega = \int_{\partial S} \omega\] (\(\int_S d\omega=\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}=\int_{\partial S} \omega\))
역사
메모
- \(\langle S,d\omega\rangle=\langle \partial S,\omega \rangle\)
- THE M¨OBIUS STRIP AND STOKES' THEOREM
관련된 항목들
관련논문
- The History of Stokes' Theorem
- Victor J. Katz, Mathematics Magazine Vol. 52, No. 3 (May, 1979), pp. 146-156