"스토크스 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[스토크스 정리]]
 
* [[스토크스 정리]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
+
==개요==
  
 
*  스토크스 정리<br>
 
*  스토크스 정리<br>
19번째 줄: 19번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">미분형식을 통한 서술==
+
==미분형식을 통한 서술==
  
 
* 3차원의 매개곡면 S : <math>\mathbf{x} (s,t)=( x(s,t), y(s,t), z(s,t))</math>, <math>(s,t)\in D</math>
 
* 3차원의 매개곡면 S : <math>\mathbf{x} (s,t)=( x(s,t), y(s,t), z(s,t))</math>, <math>(s,t)\in D</math>
63번째 줄: 63번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=

2012년 11월 1일 (목) 13:26 판

이 항목의 스프링노트 원문주소

 

 

개요

  • 스토크스 정리
  • 유향곡면 S 위에 정의된 벡터장 F 에 대하여 다음이 성립한다
    \(\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}\)
  • cycle위에서의 2-form 과 1-form의 적분으로 서술할 수 있다

 

 

 

미분형식을 통한 서술

  • 3차원의 매개곡면 S \[\mathbf{x} (s,t)=( x(s,t), y(s,t), z(s,t))\], \((s,t)\in D\)
  • 미분형식과 미분형식의 적분에 대해서는 미분형식 (differential forms)과 multilinear algebra 항목을 참조
  • 1-형식 \(\omega=P\, {d}x + Q\, {d}y+R\,dz\)는 벡터장 \(\mathbf{F}=(P,Q,R)\)과 대응
  • 2-형식 \(d\omega= (R_y-Q_x)\, dy \wedge dz + (P_z-R_x)\, dz \wedge dx+(Q_y-P_x)\, dx \wedge dy\) 는 벡터장 \(\nabla\times\mathbf{F}=(R_y-Q_x,P_z-R_x,Q_y-P_x)\)과 대응
  • 스토크스 정리
    \(\int_S d\omega = \int_{\partial S} \omega\)
    (\(\int_S d\omega=\iint_S\ (\nabla\times\mathbf{F})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf F\cdot d\mathbf{r}=\int_{\partial S} \omega\))

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

링크