"양자 다이로그 함수(quantum dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
18번째 줄: 18번째 줄:
  
 
* <math>\mathbb{C}[q,q^{-1}]</math> 위에서 u,v 로 생성되는 대수, <math>uv=qvu</math> 를 만족시킴<br>
 
* <math>\mathbb{C}[q,q^{-1}]</math> 위에서 u,v 로 생성되는 대수, <math>uv=qvu</math> 를 만족시킴<br>
** [[q-이항계수 (가우스 다항식)]] 에서 양자평면이라는 이름으로 도입<br>
+
** [[q-이항계수 (가우스 다항식)]] 에서 양자평면이라는 이름으로 사용됨<br>
 
*  성질<br><math>(u;q)_{\infty}(v;q)_{\infty}=(u+v;q)_{\infty}</math><br><math>(v;q)_{\infty}(u;q)_{\infty}=(u+v-vu;q)_{\infty}</math><br><math>(v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}</math><br>
 
*  성질<br><math>(u;q)_{\infty}(v;q)_{\infty}=(u+v;q)_{\infty}</math><br><math>(v;q)_{\infty}(u;q)_{\infty}=(u+v-vu;q)_{\infty}</math><br><math>(v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}</math><br>
 
*  양자 [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]]<br><math>(v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}</math><br>
 
*  양자 [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]]<br><math>(v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}</math><br>
119번째 줄: 119번째 줄:
 
<h5>사전 형태의 자료</h5>
 
<h5>사전 형태의 자료</h5>
  
* http://ko.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/Quantum_dilogarithm
* http://en.wikipedia.org/wiki/
 
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
152번째 줄: 151번째 줄:
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
* http://dx.doi.org/
 
 
 
 
 
 
 
<h5>관련도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
 
 
 
 
 
 
 
<h5>링크</h5>
 
 
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 

2011년 7월 30일 (토) 06:35 판

이 항목의 수학노트 원문주소

 

 

개요
  • 다이로그 함수(dilogarithm) 의 q-analogue
    \(\Psi(z)=(z;q)_{\infty}=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)

 

 

바일 대수(Weyl algebra)
  • \(\mathbb{C}[q,q^{-1}]\) 위에서 u,v 로 생성되는 대수, \(uv=qvu\) 를 만족시킴
  • 성질
    \((u;q)_{\infty}(v;q)_{\infty}=(u+v;q)_{\infty}\)
    \((v;q)_{\infty}(u;q)_{\infty}=(u+v-vu;q)_{\infty}\)
    \((v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}\)
  • 양자 5항 관계식 (5-term relation)
    \((v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}\)

 

 

 

q-integral (Jackson integral)
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

양자 다이로그 함수(quantum dilogarithm)

\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)

\(\Psi(z)=(z;q)_{\infty}=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)

 

 

근사식

\(q=e^{-t}\) 이고 t가 0으로 갈 때,
\(\Psi(x)=(x,e^{-t})_{\infty}\approx(\sqrt{1-x})\exp(-\frac{\operatorname{Li}_{2}(x)}{t})\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문