"양자 다이로그 함수(quantum dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
  
 
* [[다이로그 함수(dilogarithm)]] 의 q-analogue<br><math>\Psi(z)=(z;q)_{\infty}=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})</math><br>
 
* [[다이로그 함수(dilogarithm)]] 의 q-analogue<br><math>\Psi(z)=(z;q)_{\infty}=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})</math><br>
* [[#]]
+
* [[q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)]] 에서 오일러의 공식<br><math>\prod_{n=0}^{\infty}(1+zq^n)=1+\sum_{n\geq 1}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br>
  
 
 
 
 
140번째 줄: 140번째 줄:
  
 
* Quantum dilogarithm, [http://wain.mi.ras.ru/indexrus.html Wadim Zudilin], Preprint, Bonn and Moscow (2006)
 
* Quantum dilogarithm, [http://wain.mi.ras.ru/indexrus.html Wadim Zudilin], Preprint, Bonn and Moscow (2006)
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]<br>
+
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm] R. M. Kashaev, 1996
** R. M. Kashaev, 1996
 
 
*  Bazhanov, V V,  and N Yu Reshetikhin. 1995. “Remarks on the quantum dilogarithm”. <em>Journal of Physics A: Mathematical and General</em> 28 (8) (4월): 2217-2226. doi:[http://dx.doi.org/10.1088/0305-4470/28/8/014 10.1088/0305-4470/28/8/014]. [http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=&s5=&s6=&s7=Quantum%20Dilogarithm&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=48&mx-pid=1338071 MR1338071(96k:81087)]<br>
 
*  Bazhanov, V V,  and N Yu Reshetikhin. 1995. “Remarks on the quantum dilogarithm”. <em>Journal of Physics A: Mathematical and General</em> 28 (8) (4월): 2217-2226. doi:[http://dx.doi.org/10.1088/0305-4470/28/8/014 10.1088/0305-4470/28/8/014]. [http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=&s5=&s6=&s7=Quantum%20Dilogarithm&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=48&mx-pid=1338071 MR1338071(96k:81087)]<br>
* [http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]<br>
+
* [http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm] Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
 
  
* [http://dx.doi.org/10.1142/S0217732394003610 Quantum Dilogarithm as a 6j-Symbol]<br>
+
* [http://dx.doi.org/10.1142/S0217732394003610 Quantum Dilogarithm as a 6j-Symbol] R. M. Kashaev, MPLA Volume: 9, Issue: 40(1994) pp. 3757-3768<br>
**  R. M. Kashaev, MPLA Volume: 9, Issue: 40(1994) pp. 3757-3768<br>
+
* [http://dx.doi.org/10.1142/S0217732394000447 Quantum Dilogarithm] L.D.<em style="line-height: 2em;">Fadeev</em> and R.M.<em style="line-height: 2em;">Kashaev</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434 [http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=&s5=&s6=&s7=Quantum%20Dilogarithm&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=52&mx-pid=1264393 MR1264393(95i:11150)]<br>
* [http://dx.doi.org/10.1142/S0217732394000447 Quantum Dilogarithm]<br>
 
** L.D.<em style="line-height: 2em;">Fadeev</em> and R.M.<em style="line-height: 2em;">Kashaev</em>, Mod. Phys. Lett. A. 9 (1994) p.427–434 [http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=&s5=&s6=&s7=Quantum%20Dilogarithm&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=52&mx-pid=1264393 MR1264393(95i:11150)]
 
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
* http://dx.doi.org/

2011년 10월 22일 (토) 17:52 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

바일 대수(Weyl algebra)
  • \(\mathbb{C}[q,q^{-1}]\) 위에서 u,v 로 생성되는 대수, \(uv=qvu\) 를 만족시킴
  • 성질
    \((u;q)_{\infty}(v;q)_{\infty}=(u+v;q)_{\infty}\)
    \((v;q)_{\infty}(u;q)_{\infty}=(u+v-vu;q)_{\infty}\)
    \((v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}\)
  • 양자 5항 관계식 (5-term relation)
    \((v;q)_{\infty}(u;q)_{\infty}=(u;q)_{\infty}(-vu;q)_{\infty}(v;q)_{\infty}\)

 

 

 

q-integral (Jackson integral)
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

양자 다이로그 함수(quantum dilogarithm)

\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)

\(\Psi(z)=(z;q)_{\infty}=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)

 

 

근사식

\(q=e^{-t}\) 이고 t가 0으로 갈 때,
\(\Psi(x)=(x,e^{-t})_{\infty}\approx(\sqrt{1-x})\exp(-\frac{\operatorname{Li}_{2}(x)}{t})\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문