"열방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[열방정식]]<br>
 
* [[열방정식]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
*  열의 전달을 기술하는 편미분방정식<br><math>\frac{\partial u}{\partial t} -\beta\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)=0</math><br>
 
*  열의 전달을 기술하는 편미분방정식<br><math>\frac{\partial u}{\partial t} -\beta\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)=0</math><br>
21번째 줄: 21번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">유한한 길이의 막대에서의 경계-초기 조건 문제 : 변수분리를 통한 해</h5>
+
<h5 style="line-height: 2em; margin: 0px;">유한한 길이의 막대에서의 경계-초기 조건 문제 : 변수분리를 통한 해==
  
 
*  경계조건 (양 끝점의 온도는 고정)<br><math> t>0</math> 일 때, <math>u(0,t)=u(L,t)</math><br>
 
*  경계조건 (양 끝점의 온도는 고정)<br><math> t>0</math> 일 때, <math>u(0,t)=u(L,t)</math><br>
52번째 줄: 52번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">자코비세타함수와 heat kernel</h5>
+
<h5 style="line-height: 2em; margin: 0px;">자코비세타함수와 heat kernel==
  
 
*  유한한 길이의 막대에서의 경계-초기값 문제<br><math>u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t</math><br><math>\hat{f}(n)=\int_{0}^{L}f(y)e^{-\frac{2\pi i ny}{L}}\,dy</math><br>
 
*  유한한 길이의 막대에서의 경계-초기값 문제<br><math>u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t</math><br><math>\hat{f}(n)=\int_{0}^{L}f(y)e^{-\frac{2\pi i ny}{L}}\,dy</math><br>
65번째 줄: 65번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">가우시안 Heat kernel</h5>
+
<h5 style="line-height: 2em; margin: 0px;">가우시안 Heat kernel==
  
 
*  무한한 길이의 막대를 가정 <math>-\infty<x<\infty</math><br>
 
*  무한한 길이의 막대를 가정 <math>-\infty<x<\infty</math><br>
78번째 줄: 78번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
  
 
 
 
 
90번째 줄: 90번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
  
 
*  천안함 관련 http://www.cheonan46.go.kr//89<br>
 
*  천안함 관련 http://www.cheonan46.go.kr//89<br>
98번째 줄: 98번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
  
 
* [[정규분포와 그 확률밀도함수]]<br>
 
* [[정규분포와 그 확률밀도함수]]<br>
107번째 줄: 107번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjdhY2I2NmUtZGE0Yy00NDk1LWE5OWMtODM0OGIwNmFkYmVj&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjdhY2I2NmUtZGE0Yy00NDk1LWE5OWMtODM0OGIwNmFkYmVj&sort=name&layout=list&num=50
122번째 줄: 122번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EC%97%B4%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/열방정식]
 
* [http://ko.wikipedia.org/wiki/%EC%97%B4%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/열방정식]
132번째 줄: 132번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
  
 
* Narasimhan, T. N. (1999), Fourier's heat conduction equation: History, influence, and connections, Rev. Geophys., 37(1), 151–172, [http://dx.doi.org/10.1029/1998RG900006%20 doi:10.1029/1998RG900006]
 
* Narasimhan, T. N. (1999), Fourier's heat conduction equation: History, influence, and connections, Rev. Geophys., 37(1), 151–172, [http://dx.doi.org/10.1029/1998RG900006%20 doi:10.1029/1998RG900006]
143번째 줄: 143번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
  
 
* [http://books.google.com/books?id=JXtJAAAAYAAJ&printsec=frontcover&hl=ko&source=gbs_v2_summary_r&cad=0#v=onepage&q&f=false Théorie analytique de la chaleur]<br>
 
* [http://books.google.com/books?id=JXtJAAAAYAAJ&printsec=frontcover&hl=ko&source=gbs_v2_summary_r&cad=0#v=onepage&q&f=false Théorie analytique de la chaleur]<br>
151번째 줄: 151번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>

2012년 11월 1일 (목) 12:56 판

이 항목의 스프링노트 원문주소==    
개요==
  • 열의 전달을 기술하는 편미분방정식
    \(\frac{\partial u}{\partial t} -\beta\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)=0\)
  • 일반적으로 라플라시안을 사용하여 다음과 같이 표현
    \(\frac{\partial u}{\partial t} = \beta\nabla^2 u\)
  • 일차원 열방정식
   
유한한 길이의 막대에서의 경계-초기 조건 문제 : 변수분리를 통한 해==
  • 경계조건 (양 끝점의 온도는 고정)
    \( t>0\) 일 때, \(u(0,t)=u(L,t)\)
  • 초기조건 (\(t=0\)) 에서의 온도분포
    \(u(x,0)=f(x)\)
\(u(x,t)=X(x)T(t)\)로 두자. 변수분리를 사용하자. \(X''(x)=K_{n}X(x)\) \(T'(t)=\beta K_{n}T(t)\) 여기서 \(K_{n}=-(\frac{2\pi}{L})^2n^2\), \(n=0, \pm 1,\pm 2,\pm 3,\cdots\) \(X_n(x)=Ae^{ \frac{2\pi i n x}{L}}+Be^{- \frac{2\pi i n x}{L}}\) \(T_n(t)=e^{\beta K_{n} t}=e^{-\beta(\frac{2\pi}{L})^2n^2t}\) 따라서 열방정식의 해는 \(u_{n}(x,t)=e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t\)  의 선형결합으로 나타낼 수 있다. \(u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t\) 여기서 \(\hat{f}(n)=\int_{0}^{L}f(y)e^{-\frac{2\pi i ny}{L}}\,dy\) 는 푸리에 급수    
자코비세타함수와 heat kernel==
  • 유한한 길이의 막대에서의 경계-초기값 문제
    \(u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t\)
    \(\hat{f}(n)=\int_{0}^{L}f(y)e^{-\frac{2\pi i ny}{L}}\,dy\)
  • \(L=1,\beta=1/2\pi\) 로 두자.
    \(u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{2\pi i nx}e^{-2\pi n^2t}\)
    \(\hat{f}(n)=\int_{0}^{1}f(y)e^{-2\pi i ny}\,dy\)
  • 위의 두 식을 함께 쓰면,
    \(u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{2\pi i nx}e^{-2\pi n^2t}=\int_{0}^{1}(\sum_{n=-\infty}^{\infty}e^{-2\pi i ny}e^{2\pi i nx}e^{-2\pi n^2t}) f(y)\,dy=\int_{0}^{1}K(x-y,t)f(y)\,dy \)
    여기서 \(K(x,t)=\sum_{n=-\infty}^{\infty}e^{2\pi i nx}e^{-2\pi n^2t}\)
    heat kernel 로서의 세타함수를 얻는다
  • 자코비 세타함수
    \(\vartheta (x,it)=1+2\sum_{n=1}^\infty \exp(-\pi n^2 t) \cos(2\pi nx)\)
    \(\frac{\partial}{\partial t} \vartheta(x,it)=\frac{1}{4\pi} \frac{\partial^2}{\partial x^2} \vartheta(x,it)\)
     
가우시안 Heat kernel==
  • 무한한 길이의 막대를 가정 \(-\infty<x<\infty\)
  • 초기조건 (\(t=0\)) 에서의 온도분포
    \(u(x,0)=f(x)\)
  • \(N(\mu,\sigma^2)\) 인 정규분포의 확률밀도함수는 다음과 같다 (정규분포와 그 확률밀도함수)
    \(\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\)
  • heat kernel
    \(K(x,t)=\frac{1}{\sqrt{2\pi \beta t}}\exp\left(-\frac{x^2}{4\beta t}\right)\)
  • heat kernel 을 이용한 열방정식의 해
    \(u(x,t)=\int_{-\infty}^{\infty}f(y)K(x-y,t)\,dy=\frac{1}{\sqrt{2 \pi \beta t}}\int_{-\infty}^{\infty}f(y)\exp\left(-\frac{(x-y)^2}{4\beta t}\right)\,dy\)
  • 확률론적 이해 \[\beta=1/2\] 인 경우
    \(u(x,t)=\int_{-\infty}^{\infty}f(y)K(x-y,t)\,dy=E[f(X_t)]\)
    여기서 \(X_t\)는 \(N(x,t)\)를 따르는 확률변수
   
역사==      
메모==    
관련된 항목들==    

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료==    
관련논문==    
관련도서==      
관련기사==