"원분체의 데데킨트 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소==
  
 
* [[원분체의 데데킨트 제타함수]]
 
* [[원분체의 데데킨트 제타함수]]
7번째 줄: 7번째 줄:
 
 
 
 
  
==개요</h5>
+
==개요==
  
 
* <math>K = \mathbb Q(\zeta_n)</math>에 대한 [[데데킨트 제타함수]]<br><math>\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}</math><br>
 
* <math>K = \mathbb Q(\zeta_n)</math>에 대한 [[데데킨트 제타함수]]<br><math>\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}</math><br>
17번째 줄: 17번째 줄:
 
 
 
 
  
==데데킨트 제타함수의 분해</h5>
+
==데데킨트 제타함수의 분해==
  
 
* <math>G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times</math>
 
* <math>G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times</math>
35번째 줄: 35번째 줄:
 
 
 
 
  
==예</h5>
+
==예==
  
 
* <math>K = \mathbb Q(\zeta_3)=\mathbb{Q}(\sqrt{-3})</math>의 경우 <math>d_K=-3</math><br>
 
* <math>K = \mathbb Q(\zeta_3)=\mathbb{Q}(\sqrt{-3})</math>의 경우 <math>d_K=-3</math><br>
53번째 줄: 53번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
 
 
 
64번째 줄: 64번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
* http://www.springerlink.com/content/q8m1181vwp429788/fulltext.pdf section 10.5.4
 
* http://www.springerlink.com/content/q8m1181vwp429788/fulltext.pdf section 10.5.4
73번째 줄: 73번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[디리클레 L-함수]]
 
* [[디리클레 L-함수]]
83번째 줄: 83번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
*  단어사전<br>
 
*  단어사전<br>
101번째 줄: 101번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
113번째 줄: 113번째 줄:
 
 
 
 
  
==리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트==
  
 
 
 
 
121번째 줄: 121번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
131번째 줄: 131번째 줄:
 
 
 
 
  
==관련도서</h5>
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 11월 1일 (목) 12:57 판

이 항목의 수학노트 원문주소==    

개요

 

 

데데킨트 제타함수의 분해

  • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\)
  • modulo n 인 디리클레 캐릭터 들의 집합 \(\hat{G}\)을 생각하자
  • 디리클레 캐릭터\(\chi\in \hat{G}\) 는 적당한 conductor \(f|n\) 을 갖는 원시(primitive) 디리클레 character \(\chi_{f}\)로부터 얻어진다.

(정리)

\(\zeta_K(s)=\prod_{\chi\in \tilde{G}}L(\chi_{f},s)\)

(따름정리)

등차수열의 소수분포에 관한 디리클레 정리

 

 

  • \(K = \mathbb Q(\zeta_3)=\mathbb{Q}(\sqrt{-3})\)의 경우 \(d_K=-3\)
    • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/3\mathbb{Z})^\times =\{1,2\}\)
    • \(\hat{G}=\{1,\chi\}\)
      \(\chi(a)=\left(\frac{a}{3}\right)\)
    • \(1\in \hat{G}\)의 conductor는 1
    • \(\chi\in\hat{G}\)의 conductor는 3
    • 따라서 제타함수의 분해는 다음과 같음
      \(\zeta_{K}(s)=\zeta(s)L(\chi,s)\)
  • \(K = \mathbb Q(\zeta_4)=\mathbb{Q}(\sqrt{-1})\)의 경우 \(d_K=-4\)
    • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/4\mathbb{Z})^\times =\{1,3\}\)
    • \(\hat{G}=\{1,\chi\}\)
      \(\chi(a)=\left(\frac{-4}{a}\right)=\left(\frac{-1}{a}\right)\)
    • \(1\in \hat{G}\)의 conductor는 1
    • \(\chi\in\hat{G}\)의 conductor는 4
    • 따라서 제타함수의 분해는 다음과 같음
      \(\zeta_{K}(s)=\zeta(s)L(\chi,s)\)

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역==      

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서