"타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
57번째 줄: 57번째 줄:
 
*  유리수해<br><math>E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}</math><br>
 
*  유리수해<br><math>E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}</math><br>
 
*  주기<br><math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots</math><br><math>2\int_0^1\frac{dx}{\sqrt{x-x^3}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math><br>
 
*  주기<br><math>2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots</math><br><math>2\int_0^1\frac{dx}{\sqrt{x-x^3}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math><br>
* <math>s=1</math>에서의 [[디리클레 L-함수]]의 도함수 값<br><math>L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math><br>[[Chowla-셀베르그 공식]] 항목 참조<br>
+
* [[모듈라 , j-invariant and the singular moduli]] 의 special values 부분과 비교
* [[로그 탄젠트 적분(log tangent integral)|적분쇼]]<br><math>\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=L'_{-4}(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln({\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi})</math><br>
 
* [[타원적분의 singular value k]]<br><math>k(\sqrt{-1})=\frac{1}{\sqrt{2}}</math><br>
 
* [[타원 모듈라 λ-함수]]<br><math>\lambda(\sqrt{-1})=\frac{1}{2}</math><br>
 
* [[베버(Weber) 모듈라 함수]]<br><math>\mathfrak{f}(i)^8=4</math><br>
 
** <math>\mathfrak{f}_1(i)^8=2</math><br> <br>  <br>
 
* <math>\mathfrak{f}_2(i)^8=2</math><br>
 
 
 
 
 
 
 
*  
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]<br><math> j(\sqrt{-1})=1728=12^3</math><br>
 
 
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br><math>K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math><br>
 
* [[자코비 세타함수]]<br><math>\theta_3(\sqrt{-1})=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}}</math><br>
 
  
 
 
 
 

2009년 12월 4일 (금) 22:41 판

간단한 소개

 

 

 

격자와 타원곡선

\(y^2=4x^3-g_2(\tau)x-g_3\)

\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)

\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)

 

 

군의 구조
  • chord-tangent method
  • 유리수해에 대한 Mordell theorem
    • 유리수체 위에 정의된 타원의 유리수해는 유한생성아벨군의 구조를 가짐
    • \(\mathbb{Z}^r \oplus \mathbb{T}\)
       

 

덧셈공식
  • \(y^2=x^3+ax^2+bx+c\)위의 점 \(P=(x,y)\)에 대하여,
    \(2P\)의 \(x\)좌표는\(\frac{x^4-2bx^2-8cx-4ac+b^2}{4y^2}\) 로 주어진다

 

 

 

rank와 torsion
  • the only possible torsion groups for elliptic curves over Q are the cyclic groups of order 1,2,3,4,5,6,7,8,9,10,12 [sic -- 11 is not possible] and
    \(\frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{n\mathbb Z}\) for n=1,2,3,4
  • 예) \(E_n : y^2=x^3-n^2x\)의 torsion은 \(\{(\infty,\infty), (0,0),(n,0),(-n,0)\}\)임

 

 

  • \(y^2=x^3-x\)
    [/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]
  • 유리수해
    \(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}\)
  • 주기
    \(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\)
    \(2\int_0^1\frac{dx}{\sqrt{x-x^3}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)
  • 모듈라 군, j-invariant and the singular moduli 의 special values 부분과 비교

 

 

L-함수

 

타니야마-시무라 추측(정리)

 

 

Birch and Swinnerton-Dyer 추측

 

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그