"파울리 행렬"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/10821632">클리포드 대수와 스피너</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[파울리 행렬]]
  
 
 
 
 
7번째 줄: 9번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
파울리 행렬 ([[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 참조)<br><math>\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} </math><br><math>\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix}  </math><br><math>\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math><br>
+
전자의 스핀과 전자기장의 상호작용을 기술하기 위한 [[파울리 방정식]] 을 찾는 과정에서 등장<br>
 +
*  파울리 행렬<br><math>\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} </math><br><math>\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix}  </math><br><math>\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math><br>
  
 
 
 
 
26번째 줄: 29번째 줄:
 
* <math>\left\{I,\sigma _1,\sigma _2,\sigma _3,iI,i \sigma _1,i \sigma _2,i \sigma _3\right\}</math> 를 기저로 갖는  [[클리포드 대수와 스피너|클리포드 대수]]를 얻는다<br>
 
* <math>\left\{I,\sigma _1,\sigma _2,\sigma _3,iI,i \sigma _1,i \sigma _2,i \sigma _3\right\}</math> 를 기저로 갖는  [[클리포드 대수와 스피너|클리포드 대수]]를 얻는다<br>
 
*  3차원 유클리드 공간 <math>E_{3}</math>의 [[클리포드 대수와 스피너|클리포드 대수]]<math>C(E_{3})</math>와 동형이다<br>
 
*  3차원 유클리드 공간 <math>E_{3}</math>의 [[클리포드 대수와 스피너|클리포드 대수]]<math>C(E_{3})</math>와 동형이다<br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">사원수와의 관게</h5>
 +
 +
* [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 참조<br>
  
 
 
 
 
74번째 줄: 85번째 줄:
  
 
* [[클리포드 대수와 스피너]]
 
* [[클리포드 대수와 스피너]]
 
+
* [[파울리 방정식]]
 
+
* [[스핀과 파울리의 배타원리]]
  
 
 
 
 

2012년 8월 26일 (일) 05:10 판

이 항목의 수학노트 원문주소

 

 

개요
  • 전자의 스핀과 전자기장의 상호작용을 기술하기 위한 파울리 방정식 을 찾는 과정에서 등장
  • 파울리 행렬
    \(\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \)
    \(\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \)
    \(\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\)

 

 

commutator
  • \(\left[\sigma _i,\sigma _j\right]=2i \epsilon _{i j k}\sigma _k\)

 

 

anti-commutator
  • \(\left\{\sigma _i,\sigma _j\right\}=2\delta _{i j}\)
  • \(\left\{I,\sigma _1,\sigma _2,\sigma _3,iI,i \sigma _1,i \sigma _2,i \sigma _3\right\}\) 를 기저로 갖는  클리포드 대수를 얻는다
  • 3차원 유클리드 공간 \(E_{3}\)의 클리포드 대수\(C(E_{3})\)와 동형이다

 

 

사원수와의 관게

 

 

sl(2)
  • raising and lowering 연산자
    \(\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\)
    \(\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
    \(\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
    \([\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\)

 

 

스핀

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서