"펠 방정식(Pell's equation)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
103번째 줄: 103번째 줄:
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNTU4ZmMyMmQtMjNkZi00YWIwLWIzM2ItNzNiNTQ2YTRkMWY1&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNTU4ZmMyMmQtMjNkZi00YWIwLWIzM2ItNzNiNTQ2YTRkMWY1&sort=name&layout=list&num=50
 +
* [http://projecteuler.net/problem=66 Project Euler, Problem 66]
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
109번째 줄: 110번째 줄:
  
 
* [[매스매티카 파일 목록]]
 
* [[매스매티카 파일 목록]]
 
 
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==

2012년 9월 8일 (토) 15:54 판

개요

  • \(x^2-dy^2=1\) (\(d\) 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
  • 연분수 전개를 통하여 모든 해를 구할 수 있음
  • 해의 집합은 군의 구조를 통하여 이해할 수 있음
  • \(x^2-dy^2=\pm 1\) 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음



연분수 전개와 fundamental solution

  • \(\sqrt{d}\) 를 연분수 전개할때 얻어지는 convergents \({h_i}/{k_i}\) 가 펠 방정식의 해가 되는 \(x=h_i, y=k_i\) 를 찾을 수 있으며, 이 때 \(x\)값을 가장 작게 하는 해를 fundamental solution 이라 한다.

(정리)

펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다.

(증명)

연분수와 유리수 근사 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다

무리수 \(\alpha\)에 대하여, 유리수 \(p/q\)가 아래의 부등식을 만족시키는 경우, \(p/q\)는 무리수 \(\alpha\)의 단순연분수 전개의 convergents 중의 하나이다

\(|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}\)

이 정리를 이용하자.

펠 방정식의 정수해 \(x_ {1}^2-dy_ {1}^2=1\) 는 \(x_ {1}^2-dy_ {1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1\)를 만족시키므로,

\(|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}\)

\(|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_ {1}^{2}}\leq \frac{1}{2y_ {1}^{2}}\)

따라서, 펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. \[FilledSquare]



d=7인 경우

  • \(\sqrt{7}\)의 연분수 전개를 통한 유리수근사
    \(\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots\)
  • 펠 방정식의 해 찾기
    \(2^2-d\cdot 1^2=-3\)
    \(3^2-d\cdot 1^2=2\)
    \(5^2-d\cdot 2^2=-3\)
    \(8^2-d\cdot 3^2=1\)
    \(37^2-d\cdot 14^2=-3\)
  • 따라서 펠 방정식 \(x^2-7y^2=1\)의 fundamental solution 은 \((8,3)\) 이된다



d=13

  • fundamental solution \((x_ 1,y_ 1)\) 가 \(y_ 1>6\) 를 만족시키는 가장 작은 d
  • \(649^2-13\cdot180^2=1\)



d=61

d=109

  • 페르마의 문제
  • \(158070671986249^2 -109\cdot15140424455100^2=1\)




역사



메모

관련된 항목들



매스매티카 파일 및 계산 리소스

사전 형태의 자료



관련논문



관련도서



블로그