"앤드류스-고든 항등식(Andrews-Gordon identity)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[앤드류스-고든 항등식(Andrews-Gordon identity)]]<br>
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
98번째 줄: 90번째 줄:
 
 
 
 
  
 
 
 
==수학용어번역==
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
119번째 줄: 97번째 줄:
 
* http://www.proofwiki.org/wiki/
 
* http://www.proofwiki.org/wiki/
 
* http://mathworld.wolfram.com/Andrews-GordonIdentity.html
 
* http://mathworld.wolfram.com/Andrews-GordonIdentity.html
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
 
 
 
142번째 줄: 116번째 줄:
 
* [http://www.jstor.org/stable/2372962 A Combinatorial Generalization of the Rogers-Ramanujan Identities]<br>
 
* [http://www.jstor.org/stable/2372962 A Combinatorial Generalization of the Rogers-Ramanujan Identities]<br>
 
**  Gordon, B. Amer. J. Math. 83, 393-399, 1961.<br>
 
**  Gordon, B. Amer. J. Math. 83, 393-399, 1961.<br>
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
==블로그==
 
 
[[분류:q-급수]]
 
[[분류:q-급수]]

2013년 3월 13일 (수) 01:32 판

개요

 

 

항등식

  • 자연수 \(k\geq 2\) , \(1\leq i \leq k\)에 대하여, 다음이 성립한다\[\sum_{n_1,\cdots,n_{k-1}\geq0}\frac{x^{N_1^2+\cdots+N_{k-1}^2+N_i+\cdots+N_{k-1}}}{(x)_{n_1}...(x)_{n_{k-1}}}=\prod_{r\neq 0,\pm i \pmod {2k+1}}\frac{1}{1-x^r} \]
    여기서 \(j\leq k-1\)이면 \(N_j=n_j+\cdots+n_{k-1}\) , \(j=k\)이면 \(N_j=0\)
  • 여러 문헌에서 다음과 같이 표현되기도 한다\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\]

 

 

k=2인 경우 : 로저스-라마누잔 항등식

  • k=2인 경우, 로저스-라마누잔 연분수와 항등식을 얻는다
  • i=1인 경우
     \(H(q) =\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty} =1+q^2 +q^3 +q^4+q^5 +2q^6+\cdots\)
  • i=2인 경우\[G(q) = \sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty} =1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots\]

 

 

k=3인 경우

  • i=1인 경우\[\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}+n_1+2n_2}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 1 \pmod {7}}\frac{1}{1-q^r}=\frac{(q;q^7)_\infty (q^6; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\]
  • i=2인 경우\[\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}+n_2}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 2 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^2;q^7)_\infty (q^5; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\]
  • i=3인 경우

\(\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 3 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^3;q^7)_\infty (q^4; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\)

 

 

 

얻어지는 이차형식

\(n_{1}^{2}\)

\((n_{1}+n_{2})^{2}+n_{2}^{2}\)

\((n_{1}+n_{2}+n_{3})^{2}+(n_{2}+n_{3})^{2}+n_{3}^{2}\)

\((n_{1}+n_{2}+n_{3}+n_{4})^{2}+(n_{2}+n_{3}+n_{4})^{2}+(n_{3}+n_{4})^{2}+n_{4}^{2}\)

행렬은

\(\text{A=}\left( \begin{array}{ccccc} 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 4 & 4 & 4 \\ 2 & 4 & 6 & 6 & 6 \\ 2 & 4 & 6 & 8 & 8 \\ 2 & 4 & 6 & 8 & 10 \end{array} \right)\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 


사전 형태의 자료

 

 

관련논문