"프로베니우스와 체보타레프 밀도(density) 정리"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→관련논문) |
Pythagoras0 (토론 | 기여) (→관련논문) |
||
200번째 줄: | 200번째 줄: | ||
==관련논문== | ==관련논문== | ||
+ | * Lucchini, Andrea. “The Chebotarev Invariant of a Finite Group: A Conjecture of Kowalski and Zywina.” arXiv:1509.05859 [math], September 19, 2015. http://arxiv.org/abs/1509.05859. | ||
* Zaman, Asif. “Bounding the Least Prime Ideal in the Chebotarev Density Theorem.” arXiv:1508.00287 [math], August 2, 2015. http://arxiv.org/abs/1508.00287. | * Zaman, Asif. “Bounding the Least Prime Ideal in the Chebotarev Density Theorem.” arXiv:1508.00287 [math], August 2, 2015. http://arxiv.org/abs/1508.00287. | ||
* Kosters, Michiel. “A Short Proof of a Chebotarev Density Theorem for Function Fields.” arXiv:1404.6345 [math], April 25, 2014. http://arxiv.org/abs/1404.6345. | * Kosters, Michiel. “A Short Proof of a Chebotarev Density Theorem for Function Fields.” arXiv:1404.6345 [math], April 25, 2014. http://arxiv.org/abs/1404.6345. |
2015년 9월 22일 (화) 04:50 판
개요
- 수체에 대한 갈루아 체확장이 주어진 경우
- 소 아이디얼에 대응되는 갈루아 군의 원소(프로베니우스 원소 혹은 아틴 부호)는 소 아이디얼의 갈루아 체확장에서의 분해 (또는 체확장을 주는 다항식 $\bmod p$의 분해)에 대한 정보를 담고 있음
- 밀도 정리는 이러한 갈루아 군의 원소의 분포와 그 비율에 관한 정리
- 정수론에서의 상호법칙 (reciprocity laws)과 깊은 관계
프로베니우스의 밀도 정리
- 소 아이디얼에 대한 순환 마디 형태의 분포
- \(f(x)\in\mathbb{Z}[x]\) : 갈루아 군이 $G=\operatorname{Gal}(f)$인, 차수가 $n$이고 최고차항이 1인 기약다항식
- $f$의 서로 다른 해를 $\alpha_1,\cdots, \alpha_n$으로 두면, $G$는 치환군 $S_n$의 부분집합으로 볼 수 있다
- 소수 $p$에 대하여, $f(x) \pmod p$의 인수분해로부터 $n$의 분할 \(\sigma_p=(n_1,n_2,\cdots,n_r)\)가 정의된다
- 정리 (프로베니우스)
주어진 $n$의 분할 \((n_1,n_2,\cdots,n_r)\)에 대하여, 집합 $S=\{p|\sigma_p=(n_1,n_2,\cdots,n_r) \}$의 밀도 $\delta(S)$가 존재하며, 이는 $\delta(S)=|N|/|G|$으로 주어진다. 여기서 $N$은 순환 마디 형태가 \((n_1,n_2,\cdots,n_r)\)인 $G\subseteq S_n$의 부분집합, 즉 \(N =\{\sigma \in G| \sigma\text{ has a cycle pattern } (n_1,n_2,\cdots,n_r)\}\)
예
- 다항식 $x^3-2$, $G=S_3$
- $p \equiv 1\bmod 3$이면 순환 마디 형태는 $(1,1,1)$ 또는 $(3)$
- $p \equiv 2\bmod 3$이면 순환 마디 형태는 $(1,2)$
$$ \begin{array}{cccc} p & p \bmod 3 & x^3-2 & \text{cycle} \\ \hline 5 & 2 & (x+2) \left(x^2+3 x+4\right) & \{1,2\} \\ 7 & 1 & x^3+5 & \{3\} \\ 11 & 2 & (x+4) \left(x^2+7 x+5\right) & \{1,2\} \\ 13 & 1 & x^3+11 & \{3\} \\ 17 & 2 & (x+9) \left(x^2+8 x+13\right) & \{1,2\} \\ 19 & 1 & x^3+17 & \{3\} \\ 23 & 2 & (x+7) \left(x^2+16 x+3\right) & \{1,2\} \\ 29 & 2 & (x+3) \left(x^2+26 x+9\right) & \{1,2\} \\ 31 & 1 & (x+11) (x+24) (x+27) & \{1,1,1\} \\ 37 & 1 & x^3+35 & \{3\} \\ 41 & 2 & (x+36) \left(x^2+5 x+25\right) & \{1,2\} \\ 43 & 1 & (x+9) (x+11) (x+23) & \{1,1,1\} \\ 47 & 2 & (x+26) \left(x^2+21 x+18\right) & \{1,2\} \\ 53 & 2 & (x+35) \left(x^2+18 x+6\right) & \{1,2\} \\ 59 & 2 & (x+21) \left(x^2+38 x+28\right) & \{1,2\} \\ 61 & 1 & x^3+59 & \{3\} \\ 67 & 1 & x^3+65 & \{3\} \\ 71 & 2 & (x+22) \left(x^2+49 x+58\right) & \{1,2\} \\ 73 & 1 & x^3+71 & \{3\} \\ 79 & 1 & x^3+77 & \{3\} \end{array} $$
- $p\geq 5$인 10000개의 소수에 대하여 순환 마디 구조의 빈도는 다음과 같다
- $(3)$, 3354개, 비율은 대략 $2/6$
- $(1, 1, 1)$, 1635개, 비율은 대략 $1/6$
- $(1, 2)$, 5011개, 비율은 대략 $3/6$
체보타레프의 밀도 정리
- 소 아이디얼에 $G$의 켤레류를 대응시킴
- 프로베니우스의 정리보다 더 강력함
- 순환마디 형태가 같으나, 서로 다른 켤레류에 있는 갈루아 군의 원소가 존재함
- \(f(x)\in\mathbb{Z}[x]\) : 갈루아 군이 G인 최고차항이 1인 기약다항식
- 소수 $p$에 대하여, 프로베니우스 원소 $\operatorname{Frob}_p\in G$를 (up to conjugacy) 얻을 수 있으며, 이는 $\operatorname{Frob}_p\in C\subseteq G$를 만족하는 $G$의 켤레류 $C$를 정의함
- 정리 (체보타레프)
갈루아 군 $G$의 주어진 켤레류 $C$에 대하여, 집합 $S=\{p|\operatorname{Frob}_p\in C \}$의 밀도 $\delta(S)$가 존재하며, 이는 $\delta(S)=|C|/|G|$로 주어진다
예
- 원분다항식 $f=x^4-x^3+x^2-x+1$의 primitive인 근을 $\zeta$로 두자
- $f$의 근은, $\alpha_1=\zeta^1,\alpha_2=\zeta^3,\alpha_3=\zeta^7,\alpha_4=\zeta^9$
- 갈루아 군 $G\cong (\mathbb{Z}/10\mathbb{Z})^{\times}=\{1,3,7,9\}$이고 $a\in(\mathbb{Z}/10\mathbb{Z})^{\times}$는 $\zeta\mapsto \zeta^a$로 작용
- $p \equiv 1\bmod 10$이면 순환 마디 형태는 $(1,1,1,1)$, $\operatorname{Frob}_p=1$
- $p \equiv 3\bmod 10$이면 순환 마디 형태는 $(4)$, $\operatorname{Frob}_p=3$
- $p \equiv 7\bmod 10$이면 순환 마디 형태는 $(4)$, $\operatorname{Frob}_p=7$
- $p \equiv 9\bmod 10$이면 순환 마디 형태는 $(2,2)$, $\operatorname{Frob}_p=9$
$$ \begin{array}{cccc} p & x^4-x^3+x^2-x+1 \bmod p & \text{cycle} & \text{Frob}_p \\ \hline 7 & x^4+6 x^3+x^2+6 x+1 & \{4\} & 7 \\ 11 & (x+3) (x+4) (x+5) (x+9) & \{1,1,1,1\} & 1 \\ 13 & x^4+12 x^3+x^2+12 x+1 & \{4\} & 3 \\ 17 & x^4+16 x^3+x^2+16 x+1 & \{4\} & 7 \\ 19 & \left(x^2+4 x+1\right) \left(x^2+14 x+1\right) & \{2,2\} & 9 \\ 23 & x^4+22 x^3+x^2+22 x+1 & \{4\} & 3 \\ 29 & \left(x^2+5 x+1\right) \left(x^2+23 x+1\right) & \{2,2\} & 9 \\ 31 & (x+2) (x+4) (x+8) (x+16) & \{1,1,1,1\} & 1 \\ 37 & x^4+36 x^3+x^2+36 x+1 & \{4\} & 7 \\ 41 & (x+10) (x+16) (x+18) (x+37) & \{1,1,1,1\} & 1 \\ 43 & x^4+42 x^3+x^2+42 x+1 & \{4\} & 3 \\ 47 & x^4+46 x^3+x^2+46 x+1 & \{4\} & 7 \\ 53 & x^4+52 x^3+x^2+52 x+1 & \{4\} & 3 \\ 59 & \left(x^2+25 x+1\right) \left(x^2+33 x+1\right) & \{2,2\} & 9 \\ 61 & (x+9) (x+20) (x+34) (x+58) & \{1,1,1,1\} & 1 \\ 67 & x^4+66 x^3+x^2+66 x+1 & \{4\} & 7 \\ 71 & (x+5) (x+25) (x+54) (x+57) & \{1,1,1,1\} & 1 \\ 73 & x^4+72 x^3+x^2+72 x+1 & \{4\} & 3 \\ 79 & \left(x^2+29 x+1\right) \left(x^2+49 x+1\right) & \{2,2\} & 9 \\ 83 & x^4+82 x^3+x^2+82 x+1 & \{4\} & 3 \end{array} $$
- $p\geq 7$인 10000개의 소수에 대하여 순환 마디 구조의 빈도는 다음과 같다
- $(4)$, 5023개, 대략 2/4
- $(1, 1, 1, 1)$, 2485개, 대략 1/4
- $(2, 2)$, 2492개, 대략 1/4
- $p\geq 7$인 10000개의 소수에 대하여 각 프로베니우스 원소의 빈도는 다음과 같다
- $\operatorname{Frob}_p=1$, 2485개, 대략 1/4
- $\operatorname{Frob}_p=3$, 2515개, 대략 1/4
- $\operatorname{Frob}_p=7$, 2508개, 대략 1/4
- $\operatorname{Frob}_p=9$, 2492개, 대략 1/4
밀도 정리를 통한 디리클레 정리의 유도
- 증명
자연수 $n$에 대하여, \(\zeta_n\)는 primitive n-단위근이고 \(K = \mathbb Q(\zeta_n)\)라 하자.
\(\wp \subset \mathcal{O}_K\) 는 소수 $p$ 를 나누는 unramified인 소 아이디얼이라 하자.
소수 $p$에 대한 프로베니우스 원소 \(\operatorname{Frob}_p(\alpha)=\alpha ^p \pmod \wp\) 를 만족시키는 \(\sigma_p \in \text{Gal}(K/\mathbb Q)\) 로 정의된다.
$p$의 분해는 프로베니우스 원소의 cycle 구조를 통해서 알 수 있다.
한편 적당한 $r\in \mathbb{Z}, s=0,1,\cdots, n-1$에 대하여, $p=rn+s$로 쓸 수 있다. \(\operatorname{Frob}_p(\zeta)=\zeta ^p=\zeta^{rn+s}=\zeta^s\) 이므로, $\operatorname{Frob}_p$는 $p$를 $n$으로 나눈 나머지에 의존한다.
따라서 체보타레프 정리에 의해 디리클레 정리가 증명된다. ■
메모
- http://mathoverflow.net/questions/136025/frobenius-density-theorem
- http://www.mat.uniroma3.it/scuola_orientamento/alumni/laureati/pesiri/sintesi.pdf 40~41p
역사
- 1880 프로베니우스의 밀도 정리
- 1922 체보타레프의 밀도 정리
- 1927 아틴 상호 법칙
- 수학사 연표
수학용어번역
- conjugate class - 켤레류, 공액류
- cycle decomposition - 순환치환 분할
- conjugate - 대한수학회 수학용어집
- 켤레, 공액
- conjugacy - 대한수학회 수학용어집
- 켤레변형, 공액연산자
- cycle - 대한수학회 수학용어집
- 순환마디, 순환치환, 사이클
관련된 항목들
- 등차수열의 소수분포에 관한 디리클레 정리
- 정수론에서의 상호법칙 (reciprocity laws)
- 유한체에서 정수계수 다항식의 분해(코드)
- 사토-테이트 추측 (Sato–Tate conjecture)
관련된 학부 과목
관련된 대학원 과목
사전 형태의 자료
- http://en.wikipedia.org/wiki/Chebotarev's_density_theorem
- http://en.wikipedia.org/wiki/Frobenius_element
관련도서
- M.D. Fried, Field Arithmetic
- chapter 6. The Chebotarev Density Theorem
리뷰, 에세이, 강의노트
- Frobenius and his Density theorem for primes B. Sury, Springer India, Volume 8, Number 12 / 2003년 12월
- The Chebotarev Density Theorem Hendrik Lenstra
- Chebotarev and his density theorem P. Stevenhagen and H. W. Lenstra, Jr
- What is a Reciprocity Law? B. F. Wyman ,The American Mathematical Monthly, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
관련논문
- Lucchini, Andrea. “The Chebotarev Invariant of a Finite Group: A Conjecture of Kowalski and Zywina.” arXiv:1509.05859 [math], September 19, 2015. http://arxiv.org/abs/1509.05859.
- Zaman, Asif. “Bounding the Least Prime Ideal in the Chebotarev Density Theorem.” arXiv:1508.00287 [math], August 2, 2015. http://arxiv.org/abs/1508.00287.
- Kosters, Michiel. “A Short Proof of a Chebotarev Density Theorem for Function Fields.” arXiv:1404.6345 [math], April 25, 2014. http://arxiv.org/abs/1404.6345.
- Kowalski, Emmanuel, and David Zywina. “The Chebotarev Invariant of a Finite Group.” arXiv:1008.4909 [math], August 29, 2010. http://arxiv.org/abs/1008.4909.