"파울리 행렬"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
* 전자의 스핀과 전자기장의 상호작용을 기술하기 위한 [[파울리 방정식]] 을 찾는 과정에서 등장<br>
+
* 전자의 스핀과 전자기장의 상호작용을 기술하기 위한 [[파울리 방정식]] 을 찾는 과정에서 등장
* 파울리 행렬:<math>\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} </math>:<math>\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix}  </math>:<math>\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math><br>
+
* 파울리 행렬
 +
:<math>\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} </math>:<math>\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix}  </math>:<math>\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math>
  
 
+
  
 
+
  
==commutator==
+
==교환자 관계식==
 +
* <math>[\sigma _i,\sigma _j]=2i \epsilon _{i j k}\sigma _k</math>
  
* <math>\left[\sigma _i,\sigma _j\right]=2i \epsilon _{i j k}\sigma _k</math><br>
 
  
 
 
 
 
 
  
 
==anti-commutator==
 
==anti-commutator==
  
* <math>\left\{\sigma _i,\sigma _j\right\}=2\delta _{i j}</math><br>
+
* <math>\left\{\sigma _i,\sigma _j\right\}=2\delta _{i j}</math>
* <math>\left\{I,\sigma _1,\sigma _2,\sigma _3,iI,i \sigma _1,i \sigma _2,i \sigma _3\right\}</math> 를 기저로 갖는  [[클리포드 대수와 스피너|클리포드 대수]]를 얻는다<br>
+
* <math>\left\{I,\sigma _1,\sigma _2,\sigma _3,iI,i \sigma _1,i \sigma _2,i \sigma _3\right\}</math> 를 기저로 갖는  [[클리포드 대수와 스피너|클리포드 대수]]를 얻는다
*  3차원 유클리드 공간 <math>E_{3}</math>의 [[클리포드 대수와 스피너|클리포드 대수]]<math>C(E_{3})</math>와 동형이다<br>
+
*  3차원 유클리드 공간 <math>E_{3}</math>[[클리포드 대수와 스피너|클리포드 대수]]<math>C(E_{3})</math>와 동형이다
  
 
 
  
 
 
  
 
==사원수와의 관게==
 
==사원수와의 관게==
  
* [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 참조<br>
+
* [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 참조
  
 
+
  
 
+
  
 
==sl(2)==
 
==sl(2)==
39번째 줄: 35번째 줄:
 
:<math>\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math>
 
:<math>\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math>
 
:<math>\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math>
 
:<math>\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math>
:<math>[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}</math><br>
+
:<math>[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}</math>
  
  
 
==여러가지 관계식==
 
==여러가지 관계식==
$$
+
:<math>
 
\sigma_{+}^2=\sigma_{-}^2=0
 
\sigma_{+}^2=\sigma_{-}^2=0
$$
+
</math>
  
$$
+
:<math>
 
\{\sigma_{+},\sigma_{-}\}=1
 
\{\sigma_{+},\sigma_{-}\}=1
$$
+
</math>
  
$$
+
:<math>
 
\sigma_{+}\sigma_{-}=(1+\sigma_z)/2
 
\sigma_{+}\sigma_{-}=(1+\sigma_z)/2
$$
+
</math>
  
$$
+
:<math>
 
\exp(i \frac{\pi}{2}\sigma_z)=i\sigma_z
 
\exp(i \frac{\pi}{2}\sigma_z)=i\sigma_z
$$ 
+
</math>
 +
 
  
 
==스핀==
 
==스핀==
 +
* 양자역학적 시스템의 간단한 예
 +
* [[스핀과 파울리의 배타원리]] 항목 참조
  
 
+
  
* 양자역학적 시스템의 간단한 예<br>
+
   
* [[스핀과 파울리의 배타원리]] 항목 참조<br>
 
 
 
 
 
 
 
 
 
  
 
==역사==
 
==역사==
74번째 줄: 68번째 줄:
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
 
+
  
 
 
  
==메모==
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
94번째 줄: 78번째 줄:
 
* [[스핀과 파울리의 배타원리]]
 
* [[스핀과 파울리의 배타원리]]
 
* [[요르단-위그너 변환(Jordan-Wigner transformation)]]
 
* [[요르단-위그너 변환(Jordan-Wigner transformation)]]
 +
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxUUxmTjdqM1VEamM/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxUUxmTjdqM1VEamM/edit
  
 
 
  
==사전 형태의 자료==
+
[[분류:리군과 리대수]]
 +
[[분류:수리물리학]]
  
* http://ko.wikipedia.org/wiki/
+
== 노트 ==
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
  
 
+
===말뭉치===
 +
# the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded.<ref name="ref_c22282a2">[https://encyclopediaofmath.org/wiki/Pauli_matrices Encyclopedia of Mathematics]</ref>
 +
# In May 1927 Pauli published "Zur Quantenmechanik des magnetischen Elektrons", in which he introduced "Pauli matrices".<ref name="ref_bba6b967">[https://library.ethz.ch/en/locations-and-media/platforms/virtual-exhibitions/wolfgang-pauli-and-modern-physics/the-old-testament-and-the-pauli-matrices.html The "Old Testament" and the Pauli matrices]</ref>
 +
# , it is often more convenient to generate it from a basis formed by the Pauli matrices augmented by the unit matrix.<ref name="ref_f29c46b1">[https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Book%3A_Applied_Geometric_Algebra_(Tisza)/02%3A_The_Lorentz_Group_and_the_Pauli_Algebra/2.04%3A_The_Pauli_Algebra 2.4: The Pauli Algebra]</ref>
 +
# This relationship between the Pauli matrices and SU(2) can be explored further, as can be seen from the following simple example.<ref name="ref_7a7b4c73">[https://en.wikiversity.org/wiki/Pauli_matrices Pauli matrices]</ref>
 +
# As the quaternions of unit norm is group-isomorphic to SU(2), this gives yet another way of describing SU(2) via the Pauli matrices.<ref name="ref_7a7b4c73" />
 +
# In quantum mechanics, each Pauli matrix represents an observable describing the spin of a spin ½ particle in the three spatial directions.<ref name="ref_7a7b4c73" />
 +
# The mathematical significance of this operator is seen by noticing that, from the properties of the Pauli matrices, all even powers of n˙ σ are equal to 1, and all odd powers are equal to n˙ σ.<ref name="ref_8692b5e1">[https://www.sciencedirect.com/topics/mathematics/pauli-matrix Pauli Matrix - an overview]</ref>
 +
# Hermitian operators represent observables in quantum mechanics, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space.<ref name="ref_14ff85e1">[https://en.wikipedia.org/wiki/Pauli_matrices Pauli matrices]</ref>
 +
# In quantum mechanics, each Pauli matrix is related to an angular momentum operator that corresponds to an observable describing the spin of a spin ½ particle, in each of the three spatial directions.<ref name="ref_14ff85e1" />
 +
# Hence the Pauli matrices or the Sigma matrices operating on these spinors have to be 4 × 4 matrices.<ref name="ref_14ff85e1" />
 +
# The Pauli matrices, also called the Pauli spin matrices, are complex matrices that arise in Pauli's treatment of spin in quantum mechanics.<ref name="ref_c5e26bd8">[https://mathworld.wolfram.com/PauliMatrices.html Pauli Matrices -- from Wolfram MathWorld]</ref>
 +
# These matrices X, Y, and Z are called the Pauli matrices.<ref name="ref_c227cc9b">[https://www.sciencedirect.com/topics/engineering/pauli-matrix Pauli Matrix - an overview]</ref>
 +
# Pauli matrices will be discussed in greater detail in a later chapter, as they play a key role in quantum computing and quantum communication.<ref name="ref_c227cc9b" />
 +
# In the language of quantum mechanics, hermitian matrices are observables, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space.<ref name="ref_5bd32b7f">[http://www.scientificlib.com/en/Physics/LX/PauliMatrices.html Pauli matrices]</ref>
 +
# In quantum mechanics, each Pauli matrix is related to an operator that corresponds to an observable describing the spin of a spin ½ particle, in each of the three spatial directions.<ref name="ref_5bd32b7f" />
 +
# It is possible to form generalizations of the Pauli matrices in order to describe higher spin systems in three spatial dimensions.<ref name="ref_5bd32b7f" />
 +
# For arbitrarily large j, the Pauli matrices can be calculated using the ladder operators.<ref name="ref_5bd32b7f" />
 +
# Demonstrate that the three Pauli matrices given in below are unitary.<ref name="ref_1bb3667f">[https://scipython.com/book/chapter-6-numpy/questions/the-unitary-property-of-the-pauli-matrices/ The unitary property of the Pauli matrices]</ref>
 +
# The rotation performed by a Pauli matrix occurs along the X, Y, or Z axis, repectively, of our visualization.<ref name="ref_e7712ed4">[https://1ijk.dev/personal/hobbies/mathematics/eigenvalue-decomposition-of-pauli-matrices/ eigenvalue decomposition of Pauli matrices]</ref>
 +
# It can be generalized to the arbitrary number of dimensions, if we replace Pauli matrices with generalized Gell-Mann matrices .<ref name="ref_821a06ef">[https://quantumsim.gitlab.io/architecture/pauli.html Pauli Bases — Quantumsim documentation]</ref>
 +
# Convert to a list or array of Pauli matrices.<ref name="ref_a92d1c9c">[https://qiskit.org/documentation/stubs/qiskit.quantum_info.PauliTable.html info.PauliTable — Qiskit 0.23.2 documentation]</ref>
 +
# This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used.<ref name="ref_a92d1c9c" />
 +
# I have so far misrepresented the term Pauli matrices.<ref name="ref_e540a1e0">[https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/notations/pauli/index.htm Pauli Matricies]</ref>
 +
# The Pauli matrices in this form are not the exact equivalent of quaternions this is because, if we square them, we get +1 and not -1.<ref name="ref_e540a1e0" />
 +
# In this form Pauli matrices have different properties, they don't form a normed division algebra.<ref name="ref_e540a1e0" />
 +
===소스===
 +
<references />
  
 
+
== 메타데이터 ==
  
==리뷰논문, 에세이, 강의노트==
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q336233 Q336233]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'pauli'}, {'LEMMA': 'matrix'}]

2020년 12월 27일 (일) 18:15 기준 최신판

개요

  • 전자의 스핀과 전자기장의 상호작용을 기술하기 위한 파울리 방정식 을 찾는 과정에서 등장
  • 파울리 행렬

\[\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \]\[\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \]\[\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\]



교환자 관계식

  • \([\sigma _i,\sigma _j]=2i \epsilon _{i j k}\sigma _k\)


anti-commutator

  • \(\left\{\sigma _i,\sigma _j\right\}=2\delta _{i j}\)
  • \(\left\{I,\sigma _1,\sigma _2,\sigma _3,iI,i \sigma _1,i \sigma _2,i \sigma _3\right\}\) 를 기저로 갖는 클리포드 대수를 얻는다
  • 3차원 유클리드 공간 \(E_{3}\)의 클리포드 대수\(C(E_{3})\)와 동형이다


사원수와의 관게



sl(2)

  • raising and lowering 연산자

\[\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\] \[\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\] \[\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\] \[[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\]


여러가지 관계식

\[ \sigma_{+}^2=\sigma_{-}^2=0 \]

\[ \{\sigma_{+},\sigma_{-}\}=1 \]

\[ \sigma_{+}\sigma_{-}=(1+\sigma_z)/2 \]

\[ \exp(i \frac{\pi}{2}\sigma_z)=i\sigma_z \]


스핀



역사



관련된 항목들


매스매티카 파일 및 계산 리소스

노트

말뭉치

  1. the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded.[1]
  2. In May 1927 Pauli published "Zur Quantenmechanik des magnetischen Elektrons", in which he introduced "Pauli matrices".[2]
  3. , it is often more convenient to generate it from a basis formed by the Pauli matrices augmented by the unit matrix.[3]
  4. This relationship between the Pauli matrices and SU(2) can be explored further, as can be seen from the following simple example.[4]
  5. As the quaternions of unit norm is group-isomorphic to SU(2), this gives yet another way of describing SU(2) via the Pauli matrices.[4]
  6. In quantum mechanics, each Pauli matrix represents an observable describing the spin of a spin ½ particle in the three spatial directions.[4]
  7. The mathematical significance of this operator is seen by noticing that, from the properties of the Pauli matrices, all even powers of n˙ σ are equal to 1, and all odd powers are equal to n˙ σ.[5]
  8. Hermitian operators represent observables in quantum mechanics, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space.[6]
  9. In quantum mechanics, each Pauli matrix is related to an angular momentum operator that corresponds to an observable describing the spin of a spin ½ particle, in each of the three spatial directions.[6]
  10. Hence the Pauli matrices or the Sigma matrices operating on these spinors have to be 4 × 4 matrices.[6]
  11. The Pauli matrices, also called the Pauli spin matrices, are complex matrices that arise in Pauli's treatment of spin in quantum mechanics.[7]
  12. These matrices X, Y, and Z are called the Pauli matrices.[8]
  13. Pauli matrices will be discussed in greater detail in a later chapter, as they play a key role in quantum computing and quantum communication.[8]
  14. In the language of quantum mechanics, hermitian matrices are observables, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space.[9]
  15. In quantum mechanics, each Pauli matrix is related to an operator that corresponds to an observable describing the spin of a spin ½ particle, in each of the three spatial directions.[9]
  16. It is possible to form generalizations of the Pauli matrices in order to describe higher spin systems in three spatial dimensions.[9]
  17. For arbitrarily large j, the Pauli matrices can be calculated using the ladder operators.[9]
  18. Demonstrate that the three Pauli matrices given in below are unitary.[10]
  19. The rotation performed by a Pauli matrix occurs along the X, Y, or Z axis, repectively, of our visualization.[11]
  20. It can be generalized to the arbitrary number of dimensions, if we replace Pauli matrices with generalized Gell-Mann matrices .[12]
  21. Convert to a list or array of Pauli matrices.[13]
  22. This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used.[13]
  23. I have so far misrepresented the term Pauli matrices.[14]
  24. The Pauli matrices in this form are not the exact equivalent of quaternions this is because, if we square them, we get +1 and not -1.[14]
  25. In this form Pauli matrices have different properties, they don't form a normed division algebra.[14]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'pauli'}, {'LEMMA': 'matrix'}]