|
|
(사용자 2명의 중간 판 8개는 보이지 않습니다) |
1번째 줄: |
1번째 줄: |
− | * [[삼각함수]] | + | * [[삼각함수의 값]] |
− | * [[정오각형]], [[황금비]]<br><math>\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}</math><br><math>z^4+z^3+z^2+z^1+1=0</math><br> 복소평면상에서 <math>z</math> 의 <math>x</math> 좌표는 <math>\frac{-1+\sqrt{5}}{4} , \frac{-1-\sqrt{5}}{4}</math> 로 주어짐.<br> | + | :<math>\cos {\frac{2\pi}{3}} = -\frac{1}{2}</math> |
| + | * [[정오각형]], [[황금비]] |
| + | :<math>\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}</math>:<math>z^4+z^3+z^2+z^1+1=0</math> |
| + | 복소평면상에서 <math>z</math> 의 <math>x</math> 좌표는 <math>\frac{-1+\sqrt{5}}{4} , \frac{-1-\sqrt{5}}{4}</math> 로 주어짐. |
| * [[가우스와 정17각형의 작도]] | | * [[가우스와 정17각형의 작도]] |
| + | :<math>\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}</math> |
| + | :<math>16\cos{2\pi\over17} = -1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ 2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}} </math> |
| + | * [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|j-invariant]] |
| + | :<math> j(\sqrt{-1})=1728</math>:<math>j(\frac {-1+\sqrt{-3}}{2})=0</math> |
| + | :<math>j(\frac {-1+\sqrt{-43}} {2})=-884736744</math> |
| + | :<math>j(\frac {-1+\sqrt{-67}} {2})=147197952744</math>:<math> j(\frac {-1+\sqrt{-163}} {2})=-262537412640768744</math> |
| + | * [[정수에서의 리만제타함수의 값]] |
| + | :<math>\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1</math>여기서 <math>B_{2n}</math>은 [[베르누이 수]]. |
| + | :<math>\zeta(-n)=-\frac{B_{n+1}}{n+1}, n \ge 1</math>:<math>\zeta(0)=-\frac{1}{2}</math> |
| + | * [[디리클레 베타함수]] |
| + | :<math>\beta(0)= \frac{1}{2}, \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \beta(3)\;=\;\frac{\pi^3}{32}, \beta(5)\;=\;\frac{5\pi^5}{1536}, \beta(7)\;=\;\frac{61\pi^7}{184320}</math> |
| + | * [[감마함수]] |
| + | :<math>\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}</math> |
| + | * [[다이감마 함수(digamma function)]] |
| + | :<math>\psi(1) = -\gamma\,\!</math> |
| + | :<math>\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma</math> |
| + | :<math>\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma</math>:<math>\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma</math>:<math>\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma</math> |
| + | :<math>\psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma</math> |
| + | * [[다이로그 함수의 special value 계산]] |
| + | :<math>\mbox{Li}_{2}(0)=0</math> |
| + | :<math>\mbox{Li}_{2}(1)=\frac{\pi^2}{6}</math> |
| + | :<math>\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}</math> |
| + | :<math>\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)</math> |
| + | :<math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})</math> |
| + | :<math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})</math> |
| + | :<math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math> |
| + | :<math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math> |
| + | * [[르장드르 카이 함수]] |
| + | * [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K (complete elliptic integral of the first kind)]] |
| | | |
− | <math>\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}</math>
| + | [[분류:에세이]] |
− | | |
− | * <math>\cos {\frac{2\pi}{3}} = -\frac{1}{2}</math>
| |
− | * <math>\cos {\frac{2\pi}{5}} = \frac{-1+\sqrt{5}}{4}</math>
| |
− | * <math>16\cos{2\pi\over17} = -1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ 2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}} </math><br>
| |
− | | |
− | * [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|j-invariant]]<br><math> j(\sqrt{-1})=1728</math><br><math>j(\frac {-1+\sqrt{-3}}{2})=0</math><br><math>j(\frac {-1+\sqrt{-43}} {2})=-884736744</math><br><math>j(\frac {-1+\sqrt{-67}} {2})=147197952744</math><br><math> j(\frac {-1+\sqrt{-163}} {2})=-262537412640768744</math><br>
| |
− | | |
− | * [[정수에서의 리만제타함수의 값]]<br><math>\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1</math>여기서 <math>B_{2n}</math>은 [[베르누이 수|베르누이수]]. <br><math>\zeta(-n)=-\frac{B_{n+1}}{n+1}, n \ge 1</math><br><math>\zeta(0)=-\frac{1}{2}</math><br>
| |
− | * [[디리클레 베타함수]]<br><math>\beta(0)= \frac{1}{2}, \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \beta(3)\;=\;\frac{\pi^3}{32}, \beta(5)\;=\;\frac{5\pi^5}{1536}, \beta(7)\;=\;\frac{61\pi^7}{184320}</math><br>
| |
− | * [[감마함수]]<br><math>\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}</math><br>
| |
− | * [[다이감마 함수(digamma function)|Digamma 함수]]<br><math>\psi(1) = -\gamma\,\!</math><br><math>\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma</math><br><math>\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma</math><br><math>\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma</math><br><math>\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma</math><br><math>\psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma</math><br>
| |
− | * [[다이로그 함수(dilogarithm)|Dilogarithm]]
| |
− | | |
− | <math>\mbox{Li}_{2}(0)=0</math>
| |
− | | |
− | <math>\mbox{Li}_{2}(1)=\frac{\pi^2}{6}</math>
| |
− | | |
− | <math>\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}</math>
| |
− | | |
− | <math>\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)</math>
| |
− | | |
− | <math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})</math>
| |
− | | |
− | <math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})</math>
| |
− | | |
− | <math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
| |
− | | |
− | <math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
| |
− | | |
− | * [[수학사연표 (역사)|수학사연표]]
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
| |
− | | |
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
| |
− | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
| |
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
| |
− | | |
− | * http://ko.wikipedia.org/wiki/
| |
− | * http://en.wikipedia.org/wiki/
| |
− | * http://www.wolframalpha.com/input/?i=cosine
| |
− | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
| |
− | | |
− | * http://www.jstor.org/action/doBasicSearch?Query=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
| |
− | | |
− | * 도서내검색<br>
| |
− | ** http://books.google.com/books?q=
| |
− | ** http://book.daum.net/search/contentSearch.do?query=
| |
− | * 도서검색<br>
| |
− | ** http://books.google.com/books?q=
| |
− | ** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
| |
− | ** http://book.daum.net/search/mainSearch.do?query=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
| |
− | | |
− | * 네이버 뉴스 검색 (키워드 수정)<br>
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
| |
− | | |
− | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
| |
− | * [http://navercast.naver.com/science/list 네이버 오늘의과학]
| |
\[\cos {\frac{2\pi}{3}} = -\frac{1}{2}\]
\[\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}\]\[z^4+z^3+z^2+z^1+1=0\]
복소평면상에서 \(z\) 의 \(x\) 좌표는 \(\frac{-1+\sqrt{5}}{4} , \frac{-1-\sqrt{5}}{4}\) 로 주어짐.
\[\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\]
\[16\cos{2\pi\over17} = -1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ 2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}} \]
\[ j(\sqrt{-1})=1728\]\[j(\frac {-1+\sqrt{-3}}{2})=0\]
\[j(\frac {-1+\sqrt{-43}} {2})=-884736744\]
\[j(\frac {-1+\sqrt{-67}} {2})=147197952744\]\[ j(\frac {-1+\sqrt{-163}} {2})=-262537412640768744\]
\[\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1\]여기서 \(B_{2n}\)은 베르누이 수.
\[\zeta(-n)=-\frac{B_{n+1}}{n+1}, n \ge 1\]\[\zeta(0)=-\frac{1}{2}\]
\[\beta(0)= \frac{1}{2}, \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \beta(3)\;=\;\frac{\pi^3}{32}, \beta(5)\;=\;\frac{5\pi^5}{1536}, \beta(7)\;=\;\frac{61\pi^7}{184320}\]
\[\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\]
\[\psi(1) = -\gamma\,\!\]
\[\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\]
\[\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma\]\[\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma\]\[\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma\]
\[\psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma\]
\[\mbox{Li}_{2}(0)=0\]
\[\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\]
\[\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\]
\[\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\]
\[\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\]
\[\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\]
\[\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\]
\[\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\]