"주기 (period)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 26개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 +
* period
 +
** 유리수 계수를 갖는 유리함수의
 +
** 유리수 계수 다항식들의 부등식으로 표현되는 <math>\mathbb{R}^n</math>의 영역
 +
** 에서의 적분으로 얻어지는 복소수
 +
* 예 : [[원주율과 적분]]
 +
:<math>
 +
\pi =2\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx
 +
</math>
  
* [[periods]]<br>
 
  
 
+
  
 
+
==메모==
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
+
* http://mathoverflow.net/questions/126798/what-is-the-relationship-between-these-two-notions-of-period
 +
  
 
+
  
 
+
==관련된 항목들==
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
+
* [[타원곡선의 주기]]
 +
* [[타원적분]]
 +
* [[대수적 함수와 아벨적분]]
 +
* [[무리수와 초월수]]
 +
* [[원주율(파이,π)]]
 +
* [[카탈란 상수]]
 +
* [[정수에서의 리만제타함수의 값]]
 +
* [[Chowla-셀베르그 공식]]
  
 
+
  
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
+
==수학용어번역==
 +
* {{학술용어집|url=period}}
 +
** 주기
  
 
+
  
 
+
==사전 형태의 자료==
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
 
 
 
* [[무리수와 초월수]]<br>
 
* [[타원적분]]<br>
 
* [[Chowla-셀베르그 공식]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Ring_of_periods
 
* http://en.wikipedia.org/wiki/Ring_of_periods
* http://en.wikipedia.org/wiki/
+
* http://en.wikipedia.org/wiki/Differential_of_the_first_kind
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
  
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
==리뷰, 에세이, 강의노트==
 +
* Müller-Stach, Stefan. “What Is a Period ?” arXiv:1407.2388 [math], July 9, 2014. http://arxiv.org/abs/1407.2388.
 +
* [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.] M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.
 +
*  [http://www.ihes.fr/~maxim/TEXTS/Periods.pdf Periods] Zagier-Kontsevich,Mathematics unlimited—2001 and beyond, Berlin, New York: Springer-Verlag, pp. 771–808
  
* [http://www.springerlink.com/content/w65r06p4n2311064/ Algebraic values of Schwarz Triangle Functions]<br>
 
** Hironori Shiga  and Jürgen Wolfart, 2007
 
* [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.]<br>
 
**  M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.<br>
 
* [http://dx.doi.org/10.1007/BF01390068 Algebraic independence of the values of elliptic function at algebraic points]<br>
 
**  G. Chudnovsky, Inventiones Mathematicae, Volume 61, Number 3 / 1980년 10월<br>
 
*  Periods  [[4628787/attachments/2501113|periods.ps]]<br>
 
**  Zagier-Kontsevich, 2001<br>
 
*  Algebraic Groups, Hodge Theory, and Transcendence<br>
 
**  G. Wüstholz, , pp. 476–483 in Proc. of the ICM Berkeley 1986 (ed.: A.M. Gleason), AMS, 1987.<br>
 
* [http://www.ams.org/online_bks/pspum332/pspum332-ptIV-8.pdf Algebraicity of some products of values of the gamma function]<br>
 
**  N. Koblitz, A. Ogus<br>
 
**  Appendix to: P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proceedings of Symposia in Pure Mathematics, Vol. 33 Part 2, 1979, 313-346.<br>
 
  
* [http://dx.doi.org/10.1007/BF01390273 On the periods of abelian integrals and a formula of Chowla and Selberg]<br>
+
==관련논문==
 +
* Viu-Sos, Juan. “Periods of Kontsevich-Zagier I: A Semi-Canonical Reduction.” arXiv:1509.01097 [math], September 3, 2015. http://arxiv.org/abs/1509.01097.
 +
* [http://www.springerlink.com/content/w65r06p4n2311064/ Algebraic values of Schwarz Triangle Functions] Hironori Shiga  and Jürgen Wolfart, 2007
 +
* [http://dx.doi.org/10.1007/BF01390068 Algebraic independence of the values of elliptic function at algebraic points] G. Chudnovsky, Inventiones Mathematicae, Volume 61, Number 3 / 1980년 10월
 +
*  Algebraic Groups, Hodge Theory, and Transcendence, G. Wüstholz, , pp. 476–483 in Proc. of the ICM Berkeley 1986 (ed.: A.M. Gleason), AMS, 1987.
 +
* [http://www.ams.org/online_bks/pspum332/pspum332-ptIV-8.pdf Algebraicity of some products of values of the gamma function]
 +
**  N. Koblitz, A. Ogus, Appendix to: P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proceedings of Symposia in Pure Mathematics, Vol. 33 Part 2, 1979, 313-346.
 +
* [http://dx.doi.org/10.1007/BF01390273 On the periods of abelian integrals and a formula of Chowla and Selberg]
 
** Benedict H. Gross, Inventiones Mathematicae, Volume 45, Number 2 / 1978년 6월
 
** Benedict H. Gross, Inventiones Mathematicae, Volume 45, Number 2 / 1978년 6월
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
  
 
+
==관련도서==
 +
* Carlson, James, Stefan Müller-Stach, and Chris Peters. 2003. Period Mappings and Period Domains. Vol. 85. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
[[분류:상수]]
 +
[[분류:무리수와 초월수]]
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
==메타데이터==
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
===위키데이터===
* [http://math.dongascience.com/ 수학동아]
+
* ID : [https://www.wikidata.org/wiki/Q2835973 Q2835973]
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
===Spacy 패턴 목록===
* [http://betterexplained.com/ BetterExplained]
+
* [{'LEMMA': 'period'}]

2021년 2월 17일 (수) 03:50 기준 최신판

개요

  • period
    • 유리수 계수를 갖는 유리함수의
    • 유리수 계수 다항식들의 부등식으로 표현되는 \(\mathbb{R}^n\)의 영역
    • 에서의 적분으로 얻어지는 복소수
  • 예 : 원주율과 적분

\[ \pi =2\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx \]



메모



관련된 항목들


수학용어번역

  • period - 대한수학회 수학용어집
    • 주기


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

관련도서

  • Carlson, James, Stefan Müller-Stach, and Chris Peters. 2003. Period Mappings and Period Domains. Vol. 85. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'period'}]