"다이로그 함수(dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 12개는 보이지 않습니다)
13번째 줄: 13번째 줄:
 
==정의==
 
==정의==
  
*  다이로그 함수는 복소수 <math>|z|<1</math>에 대하여 다음과 같이 정의됨<br><math>\operatorname{Li}_ 2(z)= \sum_{n=1}^\infty {z^n \over n^2}</math><br><math>|z|\leq 1</math> 에서 고르게 수렴하는 급수이므로, <math>|z|\leq 1</math>에서 연속<br>
+
*  다이로그 함수는 복소수 <math>|z|<1</math>에 대하여 다음과 같이 정의됨:<math>\operatorname{Li}_ 2(z)= \sum_{n=1}^\infty {z^n \over n^2}</math>:<math>|z|\leq 1</math> 에서 고르게 수렴하는 급수이므로, <math>|z|\leq 1</math>에서 연속
*  다음과 같은 적분으로 정의하면 해석적으로 확장가능<br><math>\operatorname{Li}_ 2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math> for <math>z\in \mathbb C-[1,\infty)</math><br>
+
*  다음과 같은 적분으로 정의하면 해석적으로 확장가능:<math>\operatorname{Li}_ 2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math> for <math>z\in \mathbb C-[1,\infty)</math>
  
 
   
 
   
31번째 줄: 31번째 줄:
 
==단위원에서의 실수부와 허수부==
 
==단위원에서의 실수부와 허수부==
  
* <math>z=e^{i\theta}</math>, <math>0 \leq \theta \leq 2\pi</math> 일 때,<br><math>\operatorname{Li}_ 2(e^{i\theta})= \sum_{n=1}^\infty \frac{e^{in\theta}}{n^2}=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}+i\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math><br><math>\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math><br><math>\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}=Cl_ 2(\theta)</math><br>
+
* <math>z=e^{i\theta}</math>, <math>0 \leq \theta \leq 2\pi</math> 일 때,:<math>\operatorname{Li}_ 2(e^{i\theta})= \sum_{n=1}^\infty \frac{e^{in\theta}}{n^2}=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}+i\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math>:<math>\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math>:<math>\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}=Cl_ 2(\theta)</math>
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]] 항목 참조<br>
+
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]] 항목 참조
  
 
   
 
   
44번째 줄: 44번째 줄:
 
<math>\mbox{Li}_ 2 \left(x \right)+\mbox{Li}_ 2 \left(1-x \right)=  \frac{\pi^2}{6}-\ln(x)\ln(1-x)</math>, <math>0<x<1</math>
 
<math>\mbox{Li}_ 2 \left(x \right)+\mbox{Li}_ 2 \left(1-x \right)=  \frac{\pi^2}{6}-\ln(x)\ln(1-x)</math>, <math>0<x<1</math>
  
*  반전공식<br><math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)</math><br>
+
*  반전공식:<math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)</math>
 
* 란덴의 항등식
 
* 란덴의 항등식
  
51번째 줄: 51번째 줄:
 
<math>\mbox{Li}_ 2(1-x)+\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)</math>
 
<math>\mbox{Li}_ 2(1-x)+\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)</math>
  
*  여기에서 다음의 함수들은 초등함수 부분을 무시하면 같다는 것을 알 수 있음<br><math>\mbox{Li}_ 2(x)</math>,<math>\mbox{Li}_ 2 \left(\frac{1}{1-x}\right)</math>,  <math>\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_ 2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_ 2 \left(1-x \right)</math> , <math>-\mbox{Li}_ 2 \left( \frac{x}{x-1} \right)</math><br>
+
*  여기에서 다음의 함수들은 초등함수 부분을 무시하면 같다는 것을 알 수 있음:<math>\mbox{Li}_ 2(x)</math>,<math>\mbox{Li}_ 2 \left(\frac{1}{1-x}\right)</math>,  <math>\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_ 2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_ 2 \left(1-x \right)</math> , <math>-\mbox{Li}_ 2 \left( \frac{x}{x-1} \right)</math>
 
* [[교차비(cross ratio)|사영기하학과 교차비]], [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 항목들을 참조
 
* [[교차비(cross ratio)|사영기하학과 교차비]], [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]] 항목들을 참조
  
60번째 줄: 60번째 줄:
 
==곱셈공식==
 
==곱셈공식==
  
*  제곱공식<br><math>\mbox{Li}_ 2(x^2)=2(\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x))</math><br><math>\frac{1}{2}\mbox{Li}_ 2(x^2)=\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x)</math><br>
+
*  제곱공식:<math>\mbox{Li}_ 2(x^2)=2(\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x))</math>:<math>\frac{1}{2}\mbox{Li}_ 2(x^2)=\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x)</math>
*  일반적인 곱셈공식<br><math>\frac{1}{n} \operatorname{Li}_ 2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_ 2\left(e^{2\pi i k/n}z \right)</math><br>
+
*  일반적인 곱셈공식:<math>\frac{1}{n} \operatorname{Li}_ 2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_ 2\left(e^{2\pi i k/n}z \right)</math>
*  실수부와 허수부에 대한 덧셈공식<br><math>f(\theta)=\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math><br><math>Cl_ 2(\theta)=\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math><br> 다음 덧셈공식을 만족시킴<br><math>f(n\theta)=n\sum_{k=0}^{n-1}f(\theta+\frac{2k\pi}{n})</math><br><math>Cl_ 2(n\theta)=n\sum_{k=0}^{n-1}Cl_ 2(\theta+\frac{2k\pi}{n})</math><br>
+
*  실수부와 허수부에 대한 덧셈공식:<math>f(\theta)=\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}</math>:<math>Cl_ 2(\theta)=\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}</math> 다음 덧셈공식을 만족시킴:<math>f(n\theta)=n\sum_{k=0}^{n-1}f(\theta+\frac{2k\pi}{n})</math>:<math>Cl_ 2(n\theta)=n\sum_{k=0}^{n-1}Cl_ 2(\theta+\frac{2k\pi}{n})</math>
  
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]의 덧셈공식 참조
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]의 덧셈공식 참조
72번째 줄: 72번째 줄:
 
==5항 관계식 (5-term relation)==
 
==5항 관계식 (5-term relation)==
  
*  5항 관계식은 다이로그 함수의 가장 중요한 항등식의 하나이다.<br><math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})</math><br>
+
*  5항 관계식은 다이로그 함수의 가장 중요한 항등식의 하나이다.:<math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})</math>
* [[5항 관계식 (5-term relation)]] 항목 참조<br><br><br>
+
* [[5항 관계식 (5-term relation)]] 항목 참조
  
 
   
 
   
95번째 줄: 95번째 줄:
 
<math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
 
<math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
  
<math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math>
+
<math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})</math>
  
 
* 구체적인 계산은 [[다이로그 함수의 special value 계산]] 항목 참조
 
* 구체적인 계산은 [[다이로그 함수의 special value 계산]] 항목 참조
 
* [[황금비]]
 
* [[황금비]]
 
 
 
 
  
 
==다이로그 항등식==
 
==다이로그 항등식==
  
*  다이로그 함수를 약간 변형한 [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 다이로그 함수 (Roger's dilogarithm)]]<br><math>L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math><br>
+
*  다이로그 함수를 약간 변형한 [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 다이로그 함수 (Roger's dilogarithm)]]:<math>L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math>
*  대수적수 <math>x_i</math>와 유리수 <math>c</math>에 대한 다음과 같은 형태의 항등식을 다이로그 항등식이라 한다<br><math>\sum_{i=1}^{N}L(x_i)=cL(1)</math><br>
+
*  대수적수 <math>x_i</math>와 유리수 <math>c</math>에 대한 다음과 같은 형태의 항등식을 다이로그 항등식이라 한다:<math>\sum_{i=1}^{N}L(x_i)=cL(1)</math>
 
* 모든 다이로그 항등식을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
 
* 모든 다이로그 항등식을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
 
* [[다이로그 항등식 (dilogarithm identities)]]  항목 참조
 
* [[다이로그 항등식 (dilogarithm identities)]]  항목 참조
117번째 줄: 113번째 줄:
 
==Pochhammer 기호와의 관계==
 
==Pochhammer 기호와의 관계==
  
* [[Pochhammer 기호와 캐츠(Kac) 기호|Pochhammer 기호]]<br><math>(q)_{n} : =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)</math><br>
+
* [[Pochhammer 기호와 캐츠(Kac) 기호|Pochhammer 기호]]:<math>(q)_{n} : =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)</math>
*  로그를 취한뒤 적분을 통해 근사하면 다음을 얻는다<br><math>\int_{0}^{n}\log (1-q^{t})\,dt=\frac{1}{\log q}\int_{1}^{q^{n}}\log (1-x)\,\frac{dx}{x}=\frac{1}{\log q}(\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}(q^{n}))</math><br>
+
*  로그를 취한뒤 적분을 통해 근사하면 다음을 얻는다:<math>\int_{0}^{n}\log (1-q^{t})\,dt=\frac{1}{\log q}\int_{1}^{q^{n}}\log (1-x)\,\frac{dx}{x}=\frac{1}{\log q}(\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}(q^{n}))</math>
  
 
   
 
   
  
 
   
 
   
 
==하위페이지==
 
 
* [[다이로그 함수(dilogarithm)]]<br>
 
** [[5항 관계식 (5-term relation) |5항 관계식 (5-term relation)]]<br>
 
** [[다이로그 함수와 부정적분]]<br>
 
** [[다이로그 함수의 special value 계산]]<br>
 
** [[다이로그 항등식 (dilogarithm identities)]]<br>
 
** [[로바체프스키 함수]]<br>
 
** [[로저스 다이로그 함수 (Rogers' dilogarithm)]]<br>
 
** [[론킨 함수(Ronkin function)]]<br>
 
** [[르장드르 카이 함수]]<br>
 
** [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)]]<br>
 
** [[양자 다이로그 함수(quantum dilogarithm)]]<br>
 
** [[클라우센 함수(Clausen function)]]<br>
 
** [[트리로그 함수(trilogarithm)]]<br>
 
** [[폴리로그 함수(polylogarithm)]]<br>
 
** [[함수 다이로그 항등식(functional dilogarithm identity)]]<br>
 
 
 
 
 
 
 
 
 
 
  
 
==재미있는 사실==
 
==재미있는 사실==
156번째 줄: 128번째 줄:
 
</blockquote>
 
</blockquote>
  
 
+
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사==
+
==역사==
  
*  1696 Leibniz<br>
+
*  1696 Leibniz
*  1776 Euler<br>
+
*  1776 Euler
*  1809 W. Spence, an essay on logarithmic transcendents<br>
+
*  1809 W. Spence, an essay on logarithmic transcendents
*  1828 Abel<br>
+
*  1828 Abel
*  1840 Kummer<br>
+
*  1840 Kummer
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=dilogarithm
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=dilogarithm
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
185번째 줄: 157번째 줄:
 
* [[정수에서의 리만제타함수의 값]]
 
* [[정수에서의 리만제타함수의 값]]
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역==
+
==수학용어번역==
  
*  제안용어<br>
+
*  제안용어
** 다이로그, 쌍로그, 이중로그 ??
+
** 다이로그, 쌍로그, 이중로그 ??
 
* [http://www.google.com/dictionary?langpair=en%7Cko&q=di http://www.google.com/dictionary?langpair=en|ko&q=di]
 
* [http://www.google.com/dictionary?langpair=en%7Cko&q=di http://www.google.com/dictionary?langpair=en|ko&q=di]
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=di&page=5<br>
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=di&page=5
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=dilogarithm
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=dilogarithm
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
 
+
  
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxYXZHTWtTSFhHT2M/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxYXZHTWtTSFhHT2M/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
+
  
 
+
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://en.wikipedia.org/wiki/Polylogarithm
 
* http://en.wikipedia.org/wiki/Polylogarithm
 
* http://en.wikipedia.org/wiki/Dilogarithm
 
* http://en.wikipedia.org/wiki/Dilogarithm
 
* http://en.wikipedia.org/wiki/Multiplication_theorem
 
* http://en.wikipedia.org/wiki/Multiplication_theorem
*  M. Abramowitz and I. A. Stegun. Handbook of mathematical functions.<br>
+
*  M. Abramowitz and I. A. Stegun. Handbook of mathematical functions.
 
** [http://people.math.sfu.ca/%7Ecbm/aands/page_1004.htm http://people.math.sfu.ca/~cbm/aands/page_1004.htm]
 
** [http://people.math.sfu.ca/%7Ecbm/aands/page_1004.htm http://people.math.sfu.ca/~cbm/aands/page_1004.htm]
  
 
+
  
 
+
  
 
==관련도서==
 
==관련도서==
  
*  Frontiers in number theory, physics, and geometry II<br>
+
*  Frontiers in number theory, physics, and geometry II
 
** Cartier P., Julia B., Moussa P., Vanhove P.
 
** Cartier P., Julia B., Moussa P., Vanhove P.
* [http://books.google.com/books?id=u_UVn_iquj0C Structural properties of polylogarithms]<br>
+
* [http://books.google.com/books?id=u_UVn_iquj0C Structural properties of polylogarithms]
 
** Leonard Lewin
 
** Leonard Lewin
*  Polylogarithms and associated functions<br>
+
*  Polylogarithms and associated functions
 
** Leonard Lewin
 
** Leonard Lewin
  
 
+
  
 
+
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
 
+
* Don Zagier [http://vod.mathnet.or.kr/sub2_2.php?no=2326&key_year=x&key_name=zagier The dilogarithm in number theory and geometry]
 +
** 2012년 4월, 동영상 강의
 
* [http://www.stephenwolfram.com/publications/recent/specialfunctions/ The History and Future of Special Functions] Stephen Wolfram, 2005
 
* [http://www.stephenwolfram.com/publications/recent/specialfunctions/ The History and Future of Special Functions] Stephen Wolfram, 2005
 +
* Don Zagier [http://maths.dur.ac.uk/%7Edma0hg/dilog.pdf The Dilogarithm Function]
 +
* Anatol N. Kirillov [http://dx.doi.org/10.1143/PTPS.118.61 Dilogarithm identities],Prog.Theor.Phys.Suppl.118:61-142, 1995
  
 
+
==관련논문==
 +
* O’Sullivan, Cormac. “Zeros of the Dilogarithm.” arXiv:1507.07980 [math], July 28, 2015. http://arxiv.org/abs/1507.07980.
 +
* Broadhurst, David. ‘Tests of Conjectures on Multiple Watson Values’. arXiv:1504.08007 [hep-Th], 29 April 2015. http://arxiv.org/abs/1504.08007.
 +
* Leonard C. Maximon [http://www.jstor.org/stable/3560126 The Dilogarithm Function for Complex Argument], Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 459, No. 2039 (Nov. 8, 2003)
  
 
+
[[분류:다이로그]]
 +
[[분류:특수함수]]
  
==관련논문==
+
==메타데이터==
* http://www.jstor.org/stable/3560126
+
===위키데이터===
* [http://www.jstor.org/stable/3560126 The Dilogarithm Function for Complex Argument]<br>
+
* ID : [https://www.wikidata.org/wiki/Q1238449 Q1238449]
** Leonard C. Maximon, Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 459, No. 2039 (Nov. 8, 2003)
+
===Spacy 패턴 목록===
* [http://maths.dur.ac.uk/%7Edma0hg/dilog.pdf The Dilogarithm Function]<br>
+
* [{'LEMMA': 'polylogarithm'}]
** Don Zagier
 
* [http://dx.doi.org/10.1143/PTPS.118.61 Dilogarithm identities]<br>
 
** Anatol N. Kirillov,Prog.Theor.Phys.Suppl.118:61-142, 1995
 

2021년 2월 17일 (수) 04:01 기준 최신판

개요

  • 폴리로그 함수(poylogarithm)의 하나인 special 함수이다.
  • 오일러, 로바체프스키, 아벨 등에 의하여 연구되었다.
  • 정수론, 대수적 K-이론, 3차원 쌍곡다양체, 등각장론 등 현대수학의 많은 분야에서 중요한 역할을 한다.
  • Pochhammer 기호 \((q)_{n} =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)\) 의 근사식을 구하는 과정에서 자연스럽게 등장한다.
  • 모든 다이로그 항등식 (dilogarithm identities)을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다



정의

  • 다이로그 함수는 복소수 \(|z|<1\)에 대하여 다음과 같이 정의됨\[\operatorname{Li}_ 2(z)= \sum_{n=1}^\infty {z^n \over n^2}\]\[|z|\leq 1\] 에서 고르게 수렴하는 급수이므로, \(|z|\leq 1\)에서 연속
  • 다음과 같은 적분으로 정의하면 해석적으로 확장가능\[\operatorname{Li}_ 2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \] for \(z\in \mathbb C-[1,\infty)\)



함수의 그래프

다이로그 함수(dilogarithm)1.gif




단위원에서의 실수부와 허수부

  • \(z=e^{i\theta}\), \(0 \leq \theta \leq 2\pi\) 일 때,\[\operatorname{Li}_ 2(e^{i\theta})= \sum_{n=1}^\infty \frac{e^{in\theta}}{n^2}=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}+i\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}\]\[\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}\]\[\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}=Cl_ 2(\theta)\]
  • 로바체프스키와 클라우센 함수 항목 참조



여러가지 항등식

  • 오일러의 반사공식

\(\mbox{Li}_ 2 \left(x \right)+\mbox{Li}_ 2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\), \(0<x<1\)

  • 반전공식\[\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)\]
  • 란덴의 항등식

\(\mbox{Li}_ 2(x)+\mbox{Li}_ 2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x)\) 또는

\(\mbox{Li}_ 2(1-x)+\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)\)

  • 여기에서 다음의 함수들은 초등함수 부분을 무시하면 같다는 것을 알 수 있음\[\mbox{Li}_ 2(x)\],\(\mbox{Li}_ 2 \left(\frac{1}{1-x}\right)\), \(\mbox{Li}_ 2 \left(1- \frac{1}{x} \right)\), \(-\mbox{Li}_ 2 \left( \frac{1}{x} \right)\),\(-\mbox{Li}_ 2 \left(1-x \right)\) , \(-\mbox{Li}_ 2 \left( \frac{x}{x-1} \right)\)
  • 사영기하학과 교차비, Bloch-Wigner dilogarithm 항목들을 참조



곱셈공식

  • 제곱공식\[\mbox{Li}_ 2(x^2)=2(\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x))\]\[\frac{1}{2}\mbox{Li}_ 2(x^2)=\mbox{Li}_ 2(x)+\mbox{Li}_ 2(-x)\]
  • 일반적인 곱셈공식\[\frac{1}{n} \operatorname{Li}_ 2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_ 2\left(e^{2\pi i k/n}z \right)\]
  • 실수부와 허수부에 대한 덧셈공식\[f(\theta)=\mathfrak{R}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\cos n\theta}{n^2}=\frac{\pi^2}{6}-\frac{\theta(2\pi-\theta)}{4}\]\[Cl_ 2(\theta)=\mathfrak{I}(\operatorname{Li}_ 2(e^{i\theta}))=\sum_{n=1}^\infty \frac{\sin n\theta}{n^2}\] 다음 덧셈공식을 만족시킴\[f(n\theta)=n\sum_{k=0}^{n-1}f(\theta+\frac{2k\pi}{n})\]\[Cl_ 2(n\theta)=n\sum_{k=0}^{n-1}Cl_ 2(\theta+\frac{2k\pi}{n})\]



5항 관계식 (5-term relation)

  • 5항 관계식은 다이로그 함수의 가장 중요한 항등식의 하나이다.\[\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})\]
  • 5항 관계식 (5-term relation) 항목 참조


Special values

  • 다음 여덟 경우만이 알려져 있으며, 이것이 모든 가능한 경우라고 추측된다

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

다이로그 항등식

  • 다이로그 함수를 약간 변형한 로저스 다이로그 함수 (Roger's dilogarithm)\[L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy\]
  • 대수적수 \(x_i\)와 유리수 \(c\)에 대한 다음과 같은 형태의 항등식을 다이로그 항등식이라 한다\[\sum_{i=1}^{N}L(x_i)=cL(1)\]
  • 모든 다이로그 항등식을 5항 관계식을 통하여 이해할 수 있는지의 여부는 다이로그 함수에 대한 중요한 미해결 문제이다
  • 다이로그 항등식 (dilogarithm identities) 항목 참조



Pochhammer 기호와의 관계

  • Pochhammer 기호\[(q)_{n} : =(q;q)_{n}=(1-q)(1-q^2)\cdots(1-q^n)\]
  • 로그를 취한뒤 적분을 통해 근사하면 다음을 얻는다\[\int_{0}^{n}\log (1-q^{t})\,dt=\frac{1}{\log q}\int_{1}^{q^{n}}\log (1-x)\,\frac{dx}{x}=\frac{1}{\log q}(\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}(q^{n}))\]



재미있는 사실

  • Don Zagier

The dilogarithm is the only mathematical function with a sense of humor.




역사



관련된 항목들



수학용어번역




매스매티카 파일 및 계산 리소스




사전 형태의 자료



관련도서

  • Frontiers in number theory, physics, and geometry II
    • Cartier P., Julia B., Moussa P., Vanhove P.
  • Structural properties of polylogarithms
    • Leonard Lewin
  • Polylogarithms and associated functions
    • Leonard Lewin



리뷰논문, 에세이, 강의노트

관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'polylogarithm'}]