"푸리에 급수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
60번째 줄: 60번째 줄:
 
* http://www.wolframalpha.com/input/?i=fourier+sine+series+of+x
 
* http://www.wolframalpha.com/input/?i=fourier+sine+series+of+x
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q179467 Q179467]
 
* ID :  [https://www.wikidata.org/wiki/Q179467 Q179467]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'fourier'}, {'LEMMA': 'series'}]

2021년 2월 17일 (수) 05:07 기준 최신판

개요

  • 주어진 함수의 삼각함수를 이용한 급수표현
  • 열방정식을 푸는 과정에서 푸리에가 발견


정의

  • \(2\pi\)를 주기로 가지는 함수 \(f\)
  • 푸리에 계수의 정의\[a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0\]\[b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1\]
  • 푸리에 급수\[f(x)\sim \frac{a_0}{2} + \sum_{n=1}^\infty \, [a_n \cos(nx) + b_n \sin(nx)]\]


예1

  • \(f(x)=x\), \(-\pi < x < \pi\)\[f(x)\sim2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sin(nx)\]
  • \(f(x)=\frac{\pi-x}{2}\),\(0 < x \leq \pi\)\[f(x) \sim \sum_{n=1}^{\infty}\frac{1}{n}\sin n x\]
  • \(f(x)=x^2\), \(-\pi < x < \pi\)\[f(x)\sim \frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^2} \cos(nx)\]



예2

  • 로그감마 함수\[\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{\log n}{n}\sin 2\pi nx\]


역사



메모

\(\hat{f}(n) = \frac{1}{2\pi}\int_{-\pi}^\pi f(x) e^{inx}\, dx\)

\(f(x)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{inx}\)



관련된 항목들



사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'fourier'}, {'LEMMA': 'series'}]