"푸앵카레의 추측"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “오늘의과학” 문자열을 “” 문자열로)
 
(같은 사용자의 중간 판 9개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[푸앵카레의 추측]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
 +
*  푸앵카레의 추측 단일연결된 컴팩트 3차원 다양체는 3차원 구와 위상적으로 같다
  
* 푸앵카레의 추측<br> 단일연결된 컴팩트 3차원 다양체는 3차원 구와 위상적으로 같다<br>
+
   
  
 
+
 
 
 
 
  
 
==단일연결된 공간==
 
==단일연결된 공간==
  
*  단일연결된 공간(simply connected space)<br>
+
*  단일연결된 공간(simply connected space)
 
** 공간에 놓인 모든 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있는 경우, 그 공간은 단일연결되었다고 함.
 
** 공간에 놓인 모든 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있는 경우, 그 공간은 단일연결되었다고 함.
 
* 2차원 구면은 단일연결되어있음.
 
* 2차원 구면은 단일연결되어있음.
 
* 도넛은 단일연결되어있지 않음.
 
* 도넛은 단일연결되어있지 않음.
  
 
+
  
 
==2차원 구면의 단일연결성==
 
==2차원 구면의 단일연결성==
28번째 줄: 19번째 줄:
 
* 구면에 놓인 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있음
 
* 구면에 놓인 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있음
  
[/pages/4603403/attachments/2617503 800px-P1S2all.jpg]
+
[[파일:4603403-800px-P1S2all.jpg]]
  
 
+
  
 
+
  
 
==도넛의 단일연결성==
 
==도넛의 단일연결성==
38번째 줄: 29번째 줄:
 
* 도넛의 경우, 닫힌 곡선을 점으로 변화시킬 수 없는 경우가 존재하므로 단일연결되어 있지 않다
 
* 도넛의 경우, 닫힌 곡선을 점으로 변화시킬 수 없는 경우가 존재하므로 단일연결되어 있지 않다
  
[/pages/4603403/attachments/2617511 180px-Torus_cycles.png]
+
[[파일:4603403-180px-Torus_cycles.png]]
  
 
+
  
 
+
  
 
==다양체(manifold)==
 
==다양체(manifold)==
  
*  1차원 다양체 = 곡선<br>
+
*  1차원 다양체 = 곡선
 
** 원, 직선, ...
 
** 원, 직선, ...
*  2차원 다양체 = 곡면<br>
+
*  2차원 다양체 = 곡면
** 평면, 구면, 도넛, 
+
** 평면, 구면, 도넛,  
*  n-차원 다양체 : 곡선과 곡면의 n차원 일반화<br>
+
*  n-차원 다양체 : 곡선과 곡면의 n차원 일반화
 
** 국소적으로 n-차원 유클리드 공간과 같은 공간을 n-차원 다양체라 한다
 
** 국소적으로 n-차원 유클리드 공간과 같은 공간을 n-차원 다양체라 한다
  
 
+
  
 
+
  
 
==위상적으로 같음==
 
==위상적으로 같음==
62번째 줄: 53번째 줄:
 
* 도넛과 커피잔의 관계처럼 연속적인 변화를 통해 두 위상적 공간을 같도록 만들 수 있다면, 위상적으로 같다고 말한다
 
* 도넛과 커피잔의 관계처럼 연속적인 변화를 통해 두 위상적 공간을 같도록 만들 수 있다면, 위상적으로 같다고 말한다
  
 
+
  
 
+
  
==재미있는 사실==
 
  
 
 
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
  
 
==역사==
 
==역사==
 +
* [[수학사 연표]]
 +
* 1904 푸앵카레의 추측
 +
* 1982 써스톤 geometrization 추측
 +
* 1982 리차드 해밀턴
 +
* 2006 그리고리 페렐만
  
* [[수학사연표 (역사)|수학사연표]]
+
* 197? 써스톤 geometrization conjecture
 
* 1982 Richard Hamilton
 
* 2006 Grigori Perelman
 
  
 
+
 
 
 
 
  
 
==메모==
 
==메모==
93번째 줄: 76번째 줄:
 
* http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
 
* http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
104번째 줄: 87번째 줄:
 
* [[지식채널e '오일러의 왼쪽 눈']]
 
* [[지식채널e '오일러의 왼쪽 눈']]
  
 
+
  
 
+
  
 
==수학용어번역==
 
==수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=simply+connected
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=simply+connected
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%ED%91%B8%EC%95%B5%EC%B9%B4%EB%A0%88_%EC%B6%94%EC%B8%A1 http://ko.wikipedia.org/wiki/푸앵카레_추측]
 
* [http://ko.wikipedia.org/wiki/%ED%91%B8%EC%95%B5%EC%B9%B4%EB%A0%88_%EC%B6%94%EC%B8%A1 http://ko.wikipedia.org/wiki/푸앵카레_추측]
127번째 줄: 110번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
 
+
  
 
+
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
 
 
* Curtis T. McMullen, [http://dx.doi.org/10.1090/S0273-0979-2011-01329-5%20 The evolution of geometric structures on 3-manifolds] Bull. Amer. Math. Soc. 48 (2011), 259-274.
 
* Curtis T. McMullen, [http://dx.doi.org/10.1090/S0273-0979-2011-01329-5%20 The evolution of geometric structures on 3-manifolds] Bull. Amer. Math. Soc. 48 (2011), 259-274.
*  Tao, Terence. 2006. “Perelman’s proof of the Poincar’e conjecture: a nonlinear PDE perspective”. <em>math/0610903</em> (10월 29). http://arxiv.org/abs/math/0610903.<br>
+
*  Tao, Terence. 2006. “Perelman’s proof of the Poincar’e conjecture: a nonlinear PDE perspective”. <em>math/0610903</em> (10월 29). http://arxiv.org/abs/math/0610903.
* Shing-Tung Yau, [http://www.doctoryau.com/papers/yau_poincare.pdf Structure of Three-Manifolds– Poincar´e and geometrization conjectures] 2006
+
* Shing-Tung Yau, [http://www.doctoryau.com/papers/yau_poincare.pdf Structure of Three-Manifolds– Poincar´e and geometrization conjectures] 2006
 
+
 
 
 
 
 
 
 
 
 
 
 
 
10.1090/S0273-0979-2011-01329-5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==관련기사==
 
==관련기사==
 
+
*  네이버 뉴스 검색 (키워드 수정)
*  네이버 뉴스 검색 (키워드 수정)<br>
 
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%ED%8E%98%EB%A0%90%EB%A7%8C http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=페렐만]
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%ED%8E%98%EB%A0%90%EB%A7%8C http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=페렐만]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
  
 
+
==메타데이터==
 
+
===위키데이터===
 
+
* ID :  [https://www.wikidata.org/wiki/Q912058 Q912058]
 
+
===Spacy 패턴 목록===
==블로그==
+
* [{'LOWER': 'simply'}, {'LOWER': 'connected'}, {'LEMMA': 'space'}]
 
+
* [{'LOWER': '1-connected'}, {'LEMMA': 'space'}]
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
* [{'LOWER': '1-simply'}, {'LOWER': 'connected'}, {'LEMMA': 'space'}]
* [http://navercast.naver.com/science/list 네이버 ]
 

2021년 2월 17일 (수) 05:07 기준 최신판

개요

  • 푸앵카레의 추측 단일연결된 컴팩트 3차원 다양체는 3차원 구와 위상적으로 같다



단일연결된 공간

  • 단일연결된 공간(simply connected space)
    • 공간에 놓인 모든 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있는 경우, 그 공간은 단일연결되었다고 함.
  • 2차원 구면은 단일연결되어있음.
  • 도넛은 단일연결되어있지 않음.


2차원 구면의 단일연결성

  • 구면에 놓인 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있음

4603403-800px-P1S2all.jpg



도넛의 단일연결성

  • 도넛의 경우, 닫힌 곡선을 점으로 변화시킬 수 없는 경우가 존재하므로 단일연결되어 있지 않다

4603403-180px-Torus cycles.png



다양체(manifold)

  • 1차원 다양체 = 곡선
    • 원, 직선, ...
  • 2차원 다양체 = 곡면
    • 평면, 구면, 도넛,
  • n-차원 다양체 : 곡선과 곡면의 n차원 일반화
    • 국소적으로 n-차원 유클리드 공간과 같은 공간을 n-차원 다양체라 한다



위상적으로 같음

  • homeomorphic, homeomorphism
  • 도넛과 커피잔의 관계처럼 연속적인 변화를 통해 두 위상적 공간을 같도록 만들 수 있다면, 위상적으로 같다고 말한다




역사

  • 수학사 연표
  • 1904 푸앵카레의 추측
  • 1982 써스톤 geometrization 추측
  • 1982 리차드 해밀턴
  • 2006 그리고리 페렐만



메모



관련된 항목들



수학용어번역



사전 형태의 자료



리뷰논문, 에세이, 강의노트


관련기사

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'simply'}, {'LOWER': 'connected'}, {'LEMMA': 'space'}]
  • [{'LOWER': '1-connected'}, {'LEMMA': 'space'}]
  • [{'LOWER': '1-simply'}, {'LOWER': 'connected'}, {'LEMMA': 'space'}]