"오일러-가우스 초기하함수2F1"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→말뭉치) |
|||
(사용자 2명의 중간 판 46개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | * [[ | + | * 초기하급수:<math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math> |
+ | 여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>에 대해서는 [[포흐하머 (Pochhammer) 기호]] 항목 참조 | ||
+ | * 적분표현:<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math> | ||
+ | * 초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함 | ||
+ | * 오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구 | ||
− | + | ||
− | + | ||
− | + | ==초기하급수로 표현되는 함수의 예== | |
− | * | + | * 많은 special function 은 초기하함수의 파라메터를 변화시켜 얻어짐 |
− | + | * [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math> | |
− | + | * [[제2종타원적분 E (complete elliptic integral of the second kind)]]:<math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math> | |
− | |||
− | + | ||
− | + | ||
− | + | ==초기하 미분방정식== | |
− | * | + | * <math>w(z)=\,_2F_1(a,b;c;z)</math> 는 다음 피카드-Fuchs 형태의 미분방정식의 해가 된다 |
+ | :<math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math> | ||
+ | * 이 미분방정식을 [[초기하 미분방정식(Hypergeometric differential equations)]] 이라 부른다 | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ==오일러의 변환 공식== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<math>_2F_1 (a,b;c;z) = (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})</math> | <math>_2F_1 (a,b;c;z) = (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})</math> | ||
43번째 줄: | 41번째 줄: | ||
<math>_2F_1 (a,b;c;z) = (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)</math> | <math>_2F_1 (a,b;c;z) = (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)</math> | ||
− | + | ||
− | |||
− | |||
+ | ;증명 | ||
다음 적분표현을 활용 | 다음 적분표현을 활용 | ||
<math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math> | <math>\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt</math> | ||
− | 위의 | + | 위의 우변에서 <math>t\to 1-t</math>, <math>t\to \frac{t}{1-z-tz}</math>, <math>t\to \frac{1-t}{1-tz}</math>의 변환을 이용하면 항등식이 얻어진다. ■ |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | * http://mathworld.wolfram.com/EulersHypergeometricTransformations.html | |
+ | * 쿰머의 [[초기하 미분방정식(Hypergeometric differential equations)]]에 대한 24개의 해를 표현하는데 사용됨 | ||
− | + | ||
− | + | ||
− | + | ==contiguous 관계== | |
− | + | * [[초기하함수 2F1의 contiguous 관계]] | |
− | + | ||
− | + | ||
− | + | ==타원적분과 초기하급수== | |
− | + | * [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math> | |
− | + | ||
− | + | ||
− | + | ==모듈라 함수와의 관계== | |
− | http:// | + | * [[라마누잔과 파이]] |
+ | * '''[BB1998]'''[http://www.amazon.com/PI-AGM-Analytic-Computational-Complexity/dp/047131515X Pi and the AGM] | ||
+ | * Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998) 179,180p | ||
+ | * '''[Nes2002] 159p''' | ||
− | + | ||
− | + | ||
− | + | ==슈워츠 s-함수== | |
− | + | * [[슈바르츠 삼각형 함수|슈워츠 s-함수]] | |
− | + | ||
− | + | ||
− | + | ==special values== | |
− | + | * Chu-Vandermonde 공식:<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math> 아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다 | |
− | * [[ | + | * 가우스 공식:<math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math> |
+ | * 위의 두 식에 대해서는 [[초기하급수의 합공식|초기하 급수의 합공식]] | ||
+ | * [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분|렘니스케이트(lemniscate) 곡선과 타원적분]]:<math>\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math> | ||
+ | * http://mathworld.wolfram.com/HypergeometricFunction.html:<math>_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}</math>:<math>_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}</math>:<math>_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}</math>:<math>_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}</math>:<math>_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2</math>:<math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}</math>:<math>_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})</math> | ||
− | + | ||
− | + | ||
− | + | ==역사== | |
− | + | * [[수학사 연표]] | |
− | + | ||
− | + | ||
− | * [[ | + | ==관련된 항목들== |
− | * [[무리수와 초월수]] | + | * [[주기 (period]] |
− | * [[오일러 베타적분(베타함수)|오일러 베타적분]] | + | * [[무리수와 초월수]] |
− | * [[직교다항식과 special functions|Special functions]] | + | * [[오일러 베타적분(베타함수)|오일러 베타적분]] |
+ | * [[직교다항식과 special functions|Special functions]] | ||
+ | * [[맴돌이군과 미분방정식]] | ||
− | |||
− | |||
− | + | ==매스매티카 파일 및 계산 리소스== | |
− | * | + | * https://docs.google.com/file/d/0B8XXo8Tve1cxWFFlaHc2OVdQLXc/edit |
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ==사전 형태의 자료== | |
* [http://ko.wikipedia.org/wiki/%EC%B4%88%EA%B8%B0%ED%95%98%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/초기하함수] | * [http://ko.wikipedia.org/wiki/%EC%B4%88%EA%B8%B0%ED%95%98%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/초기하함수] | ||
150번째 줄: | 136번째 줄: | ||
* http://en.wikipedia.org/wiki/hypergeometric_differential_equation | * http://en.wikipedia.org/wiki/hypergeometric_differential_equation | ||
* http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation | * http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ||
− | < | + | ==리뷰논문, 에세이, 강의노트== |
− | + | * '''[Nes2002]'''[http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers] | |
− | * [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation] | + | ** Yu.V. Nesterenko, in <em style="">A panorama in number theory, or, The view from Baker's garden</em> (by Alan Baker,Gisbert Wüstholz), 2002 |
− | ** Reese T. Prosser, | + | * [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation] |
− | + | ** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543 | |
− | * [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series] | + | * [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series] |
** R Askey 1990 Russ. Math. Surv. 45 37-86 | ** R Askey 1990 Russ. Math. Surv. 45 37-86 | ||
− | + | ||
− | + | ||
− | + | ==관련논문== | |
− | + | * http://arxiv.org/abs/1511.00020 | |
− | * [http://dx.doi.org/10.1016/j.cam.2005.05.016 On the contiguous relations of hypergeometric series] | + | * Schrenk, K. J., and J. D. Stevenson. “Numerical Evaluation of the Gauss Hypergeometric Function: Implementation and Application to Schramm-Loewner Evolution.” arXiv:1502.05624 [cond-Mat, Physics:physics], February 19, 2015. http://arxiv.org/abs/1502.05624. |
+ | * [http://dx.doi.org/10.1016/j.cam.2005.05.016 On the contiguous relations of hypergeometric series] | ||
** Medhat A. Rakha, Adel K. Ibrahim, Journal of Computational and Applied Mathematics, Volume 192, Issue 2, 1 August 2006, Pages 396-410 | ** Medhat A. Rakha, Adel K. Ibrahim, Journal of Computational and Applied Mathematics, Volume 192, Issue 2, 1 August 2006, Pages 396-410 | ||
− | * [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.] | + | * [http://people.math.jussieu.fr/%7Emiw/articles/pdf/TranscendencePeriods.pdf Transcendence of periods: the state of the art.] |
− | ** M. Waldschmidt., | + | ** M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463. |
− | * [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series] | + | * [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series] |
− | ** Natália Archinard, | + | ** Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269 |
− | + | * Thorsley, Michael D., and Marita C. Chidichimo. 2001. “An Asymptotic Expansion for the Hypergeometric Function 2F1(a,b;c;x).” Journal of Mathematical Physics 42 (4) (April 1): 1921–1930. doi:doi:10.1063/1.1353185. http://jmp.aip.org/resource/1/jmapaq/v42/i4/p1921_s1 | |
− | * [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III] | + | * [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III] |
− | ** Joyce, G. S.; Zucker, I. J., | + | ** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222 |
− | + | * [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II] | |
− | * [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II] | + | ** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319 |
− | ** Joyce, G. S.; Zucker, I. J., | + | * Special values of the hypergeometric series |
− | * Special values of the hypergeometric series | + | ** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991) volume: 109 issue: 2 page: 257 |
− | ** Joyce, G. S.; Zucker, I. J., | + | * [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen] |
− | + | ** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월 | |
− | * [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen] | ||
− | ** Jürgen Wolfart, | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [[분류:리만곡면론]] | |
− | + | [[분류:특수함수]] | |
− | |||
− | |||
− | + | ==노트== | |
+ | ===말뭉치=== | ||
+ | # This paper introduces the hypergeo package of R routines, for numerical calculation of hypergeometric functions.<ref name="ref_cfa2d4d9">[https://cran.r-project.org/web/packages/hypergeo/vignettes/hypergeometric.pdf Numerical evaluation of the gauss hypergeometric]</ref> | ||
+ | # The package is focussed on ecient and accurate evaluation of the hypergeometric function over the whole of the complex plane within the constraints of xed-precision arithmetic.<ref name="ref_cfa2d4d9" /> | ||
+ | # 2 Numerical evaluation of the Gauss hypergeometric function with the hypergeo package when dened.<ref name="ref_cfa2d4d9" /> | ||
+ | # Writing a, b, c for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known as the hypergeometric function.<ref name="ref_cfa2d4d9" /> | ||
+ | # For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al.<ref name="ref_2c109dda">[https://en.wikipedia.org/wiki/Hypergeometric_function Hypergeometric function]</ref> | ||
+ | # Elliptic modular functions can sometimes be expressed as the inverse functions of ratios of hypergeometric functions whose arguments a, b, c are 1, 1/2, 1/3, ... or 0.<ref name="ref_2c109dda" /> | ||
+ | # We give a basic introduction to the properties of Gauss hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hyperegeo- metric equation.<ref name="ref_1fc1f143">[https://xxyyzz.cc/beukers%20hypergeometric%20functions.pdf Gauss’ hypergeometric function]</ref> | ||
+ | # Initially this document started as an informal introduction to Gauss hypergeometric functions for those who want to have a quick idea of some main facts on hypergeometric functions.<ref name="ref_1fc1f143" /> | ||
+ | # To confuse matters even more, the term "hypergeometric function" is less commonly used to mean closed form, and "hypergeometric series" is sometimes used to mean hypergeometric function.<ref name="ref_f254229c">[https://mathworld.wolfram.com/HypergeometricFunction.html Hypergeometric Function -- from Wolfram MathWorld]</ref> | ||
+ | # The hypergeometric functions are solutions to the hypergeometric differential equation, which has a regular singular point at the origin.<ref name="ref_f254229c" /> | ||
+ | # Many functions of mathematical physics can be expressed as special cases of the hypergeometric functions.<ref name="ref_f254229c" /> | ||
+ | # We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large.<ref name="ref_3534f672">[https://www.sciencedirect.com/science/article/pii/S0377042702006271 Large parameter cases of the Gauss hypergeometric function]</ref> | ||
+ | # Computes the Gauss hypergeometric function 2F1(a,b;c;z) and its derivative for real z, z<1 by integrating the defining differential equation using the Matlab differential equation solver ode15i.<ref name="ref_5ff86cd1">[https://www.mathworks.com/matlabcentral/fileexchange/21444-gauss-hypergeometric-function Gauss Hypergeometric Function]</ref> | ||
+ | # The major development of the theory of hypergeometric function was carried out by Gauss and published in his famous work of 1812.<ref name="ref_673f6451">[https://core.ac.uk/download/pdf/82050565.pdf Computers and mathematics with applications 61 (2011) 620–629]</ref> | ||
+ | # Almost all of the elementary functions of Mathematics are either hypergeometric, ratios of hypergeometric functions or limiting cases of a hypergeometric series.<ref name="ref_673f6451" /> | ||
+ | # Two hypergeometric functions with the same argument z are contiguous if their parameters a, b and c differ by integers.<ref name="ref_673f6451" /> | ||
+ | # A contiguous relation between any three contiguous hypergeometric functions can be found by combining linearly a sequence of Gauss contiguous relations.<ref name="ref_673f6451" /> | ||
+ | # In this course we will study multivariate hypergeometric functions in the sense of Gelfand, Kapranov, and Zelevinsky (GKZ systems).<ref name="ref_57bea61a">[https://people.math.umass.edu/~cattani/hypergeom_lectures.pdf Three lectures on hypergeometric functions]</ref> | ||
+ | # These functions generalize the classical hypergeometric functions of Gauss, Horn, Appell, and Lauricella.<ref name="ref_57bea61a" /> | ||
+ | # We end with a brief discussion of the classication problem for rational hypergeometric functions.<ref name="ref_57bea61a" /> | ||
+ | # For one-variable hypergeometric functions this interplay has been well understood for several decades.<ref name="ref_57bea61a" /> | ||
+ | # Abstract The two most commonly used hypergeometric functions are the conflu- ent hypergeometric function and the Gauss hypergeometric function.<ref name="ref_3d1e3bde">[https://people.maths.ox.ac.uk/porterm/papers/hypergeometric-final.pdf Numer algor]</ref> | ||
+ | # Except for specific situations, computing hypergeometric functions is difficult in practice.<ref name="ref_3d1e3bde" /> | ||
+ | # (a)j (b)j zj j ! , which is also commonly denoted by M(a; b; z) and is itself often called the confluent hypergeometric function.<ref name="ref_3d1e3bde" /> | ||
+ | # The function 2F1(a, b; c; z) is commonly denoted by F (a, b; c; z) and is also fre- quently called the Gauss hypergeometric function.<ref name="ref_3d1e3bde" /> | ||
+ | # We nd that, for both the conuent and Gauss hypergeometric functions, there is no simple answer to the problem of their computation, and dierent methods are optimal for dierent parameter regimes.<ref name="ref_89cba934">[https://www.math.ucla.edu/~mason/research/pearson_final.pdf Computation of]</ref> | ||
+ | # 3.3 Writing the conuent hypergeometric function as a single fraction . . . . . .<ref name="ref_89cba934" /> | ||
+ | # 4.3 Writing the Gauss hypergeometric function as a single fraction .<ref name="ref_89cba934" /> | ||
+ | # The computation of the hypergeometric function pFq, a special function encountered in a variety of applications, is frequently sought.<ref name="ref_89cba934" /> | ||
+ | # Returns hyp2f1 scalar or ndarray The values of the gaussian hypergeometric function.<ref name="ref_1000609c">[https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp2f1.html scipy.special.hyp2f1 — SciPy v1.6.1 Reference Guide]</ref> | ||
+ | # Using (41) and subordination property, we have thatBy adopting (13) and (64), we obtainApplying hypergeometric function (59), we obtain the upper bound for the case .<ref name="ref_8523a4ab">[https://www.researchgate.net/publication/267000586_An_integral_representation_of_some_hypergeometric_functions (PDF) An integral representation of some hypergeometric functions]</ref> | ||
+ | # Recently, there has been a clear interest on Bessel and hypergeometric functions from the point of view of geometric function theory.<ref name="ref_8523a4ab" /> | ||
+ | # A hypergeometric function is the sum of a hypergeometric series, which is dened as follows.<ref name="ref_0f9b4ff4">[https://homepage.tudelft.nl/11r49/documents/wi4006/hyper.pdf Hypergeometric functions]</ref> | ||
+ | # When one of the numerator parameters ai equals N , where N is a nonnegative integer, the hypergeometric function is a polynomial in z (see below).<ref name="ref_0f9b4ff4" /> | ||
+ | # Sometimes the most general hypergeometric function pFq is called a generalized hypergeo- metric function.<ref name="ref_0f9b4ff4" /> | ||
+ | # For the hypergeometric function 2F1 we have an integral representation due to Euler: Theorem 1.<ref name="ref_0f9b4ff4" /> | ||
+ | # This generally speeds up evaluation by producing a hypergeometric function of lower order.<ref name="ref_d5ee5555">[https://mpmath.org/doc/current/functions/hypergeometric.html Hypergeometric functions — mpmath 1.2.0 documentation]</ref> | ||
+ | # Euler introduced the power series expansion of the form: where a, b, c are rational functions and F(a, b, c, z) is called the hypergeometric function.<ref name="ref_1c0038b8">[https://iopscience.iop.org/book/978-0-7503-1496-1/chapter/bk978-0-7503-1496-1ch1 Hypergeometric series]</ref> | ||
+ | # The hypergeometric function takes a prominent position amongst the world of standard mathematical functions used in both pure and applied mathematics.<ref name="ref_1c0038b8" /> | ||
+ | # Gauss was aware of the multi-valuedness of the hypergeometric functions, known in recent times as the monodromy problem.<ref name="ref_1c0038b8" /> | ||
+ | # The modern notation for the Gauss hypergeometric function is according to Barnes (1908).<ref name="ref_1c0038b8" /> | ||
+ | # The classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.<ref name="ref_627f557f">[https://ui.adsabs.harvard.edu/abs/2004math......8269V/abstract Algebraic transformations of Gauss hypergeometric functions]</ref> | ||
+ | # This paper claims that the natural logarithm can be represented by the Gaussian hypergeometric function.<ref name="ref_90def12e">[https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3037643 Proof that the Natural Logarithm Can Be Represented by the Gaussian Hypergeometric Function by Christopher Paul Nofal :: SSRN]</ref> | ||
+ | # We establish two quadratic transformations for Gauss hypergeometric function in terms of nite summation of combination of two Clausen hypergeometric functions.<ref name="ref_fc989b75">[http://www.pvamu.edu/aam/wp-content/uploads/sites/182/2020/04/SI0606_AAM_MQ_MK_031520_Published_040620.pdf Special issue no. 6 (april 2020), pp. 71 – 86]</ref> | ||
+ | # Further, we have generalized our quadratic transformations in terms of general double series identities as well as in terms of reduction formulas for Kamp de Friets double hypergeometric function.<ref name="ref_fc989b75" /> | ||
+ | # The Hypergeometric functions of two variables was introduced by Appell (1880) and Lauricella (1893) generalized them to several variables.<ref name="ref_fc989b75" /> | ||
+ | # It is interesting to mention here that the results are very important for the application point of view, whenever hypergeometric functions reduce to gamma functions.<ref name="ref_fc989b75" /> | ||
+ | # In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions .<ref name="ref_8691ba14">[https://www.hindawi.com/journals/aaa/2014/735946/ Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions]</ref> | ||
+ | # For , and , we have where the , a special case of the generalized hypergeometric function (10), is the Gauss hypergeometric function.<ref name="ref_8691ba14" /> | ||
+ | # Further, if we set and in Theorems 1 to 5 or make use of the result (8), we obtain various integral transforms and fractional integral formulas for the Gauss hypergeometric function .<ref name="ref_8691ba14" /> | ||
+ | # This a hypergeometric equation with constants a, b and c dened by F = c, G = (a + b + 1) and H = ab and can therefore be solved near t = 0 and t = 1 in terms of the hypergeometric function.<ref name="ref_fa3ce4ee">[https://www.bits-pilani.ac.in/uploads/hypergeometric.pdf Gauss’s hypergeometric equation]</ref> | ||
+ | # Problems: Find the general solution of each of the following dierential equations near the indicated singular point in terms of hypergeometric function.<ref name="ref_fa3ce4ee" /> | ||
+ | # However, the hypergeometric function is defined over the whole of the complex plane, so analytic continuation may be used if appropriate cut lines are used.<ref name="ref_aa8484f8">[https://rdrr.io/cran/hypergeo/man/hypergeo.html hypergeo: The hypergeometric function in hypergeo: The Gauss Hypergeometric Function]</ref> | ||
+ | # Gausss hypergeometric function gives a modular parame- terization of period integrals of elliptic curves in Legendre normal form E() : y2 = x(x 1)(x ).<ref name="ref_7f2fb368">[https://uva.theopenscholar.com/files/ken-ono/files/128.pdf Gauss’s 2f1 hypergeometric function and the]</ref> | ||
+ | # Legendre elliptic curves, hypergeometric functions.<ref name="ref_7f2fb368" /> | ||
+ | # Hypergeometric functions are rarely in a form in which these formulae can be applied directly.<ref name="ref_e330e8bc">[https://carma.newcastle.edu.au/resources/jon/Preprints/Papers/Submitted%20Papers/Walks/Papers/gen-contiguity.pdf J. phys. a: math. gen. 21 (1988) 1983-1998. printed in the u k ]</ref> | ||
+ | # Writing sums as hypergeometric functions has the great advantage of simplifying manipulation by computer algebraic methods.<ref name="ref_e330e8bc" /> | ||
+ | # It is assumed that the hypergeometric functions are convergent and do not contain negative integers in the bottom parameter list.<ref name="ref_e330e8bc" /> | ||
+ | # A particular solution of Gausss hypergeometric differential equation (1) is known as Gausss hypergeometric function or simply hypergeometric function.<ref name="ref_d72c50eb">[http://182.18.165.51/Fac_File/STUDY182@342556.pdf ]</ref> | ||
+ | # 2 F 1 ( a , b , c , z ) Regularized Gauss hypergeometric function RisingFactorial ( z ) k \left(z\right)_{k} ( z ) k Rising factorial Pow a b {a}^{b} a b Power Factorial n ! n !<ref name="ref_4a0c664f">[https://fungrim.org/topic/Gauss_hypergeometric_function/ Gauss hypergeometric function]</ref> | ||
+ | # The hypergeometric functions are solutions to the Hypergeometric Differential Equation, which has a Regular Singular Point at the Origin.<ref name="ref_5d632c1c">[https://archive.lib.msu.edu/crcmath/math/math/h/h445.htm Hypergeometric Function]</ref> | ||
− | + | ===소스=== | |
+ | <references /> | ||
− | |||
− | + | ==메타데이터== | |
− | + | ===위키데이터=== | |
− | * [ | + | * ID : [https://www.wikidata.org/wiki/Q21028472 Q21028472] |
− | * [ | + | ===Spacy 패턴 목록=== |
− | * [ | + | * [{'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}] |
− | * [ | + | * [{'LOWER': 'gaussian'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}] |
+ | * [{'LOWER': 'ordinary'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}] |
2021년 2월 23일 (화) 04:21 기준 최신판
개요
- 초기하급수\[\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\]
여기서 \((a)_n=a(a+1)(a+2)...(a+n-1)\)에 대해서는 포흐하머 (Pochhammer) 기호 항목 참조
- 적분표현\[\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\]
- 초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함
- 오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구
초기하급수로 표현되는 함수의 예
- 많은 special function 은 초기하함수의 파라메터를 변화시켜 얻어짐
- 제1종타원적분 K (complete elliptic integral of the first kind)\[K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]
- 제2종타원적분 E (complete elliptic integral of the second kind)\[E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)\]
초기하 미분방정식
- \(w(z)=\,_2F_1(a,b;c;z)\) 는 다음 피카드-Fuchs 형태의 미분방정식의 해가 된다
\[z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\]
- 이 미분방정식을 초기하 미분방정식(Hypergeometric differential equations) 이라 부른다
오일러의 변환 공식
\(_2F_1 (a,b;c;z) = (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})\)
\(_2F_1 (a,b;c;z) = (1-z)^{-b}{}_2F_1(c-a,b;c;\frac{z}{z-1})\)
\(_2F_1 (a,b;c;z) = (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)\)
- 증명
다음 적분표현을 활용
\(\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\)
위의 우변에서 \(t\to 1-t\), \(t\to \frac{t}{1-z-tz}\), \(t\to \frac{1-t}{1-tz}\)의 변환을 이용하면 항등식이 얻어진다. ■
- http://mathworld.wolfram.com/EulersHypergeometricTransformations.html
- 쿰머의 초기하 미분방정식(Hypergeometric differential equations)에 대한 24개의 해를 표현하는데 사용됨
contiguous 관계
타원적분과 초기하급수
- 제1종타원적분 K (complete elliptic integral of the first kind)\[K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)\]
모듈라 함수와의 관계
- 라마누잔과 파이
- [BB1998]Pi and the AGM
- Jonathan M. Borwein, Peter B. Borwein, Wiley-Interscience (July 13, 1998) 179,180p
- [Nes2002] 159p
슈워츠 s-함수
special values
- Chu-Vandermonde 공식\[\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\] 아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다
- 가우스 공식\[\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\]
- 위의 두 식에 대해서는 초기하 급수의 합공식
- 렘니스케이트(lemniscate) 곡선과 타원적분\[\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\]
- http://mathworld.wolfram.com/HypergeometricFunction.html\[_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}\]\[_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}\]\[_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}\]\[_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}\]\[_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})\]
역사
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://ko.wikipedia.org/wiki/초기하함수
- http://en.wikipedia.org/wiki/hypergeometric_functions
- http://en.wikipedia.org/wiki/List_of_hypergeometric_identities
- http://en.wikipedia.org/wiki/hypergeometric_differential_equation
- http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
리뷰논문, 에세이, 강의노트
- [Nes2002]On the Algebraic Independence of Numbers
- Yu.V. Nesterenko, in A panorama in number theory, or, The view from Baker's garden (by Alan Baker,Gisbert Wüstholz), 2002
- On the Kummer Solutions of the Hypergeometric Equation
- Reese T. Prosser, The American Mathematical Monthly, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543
- Ramanujan and hypergeometric and basic hypergeometric series
- R Askey 1990 Russ. Math. Surv. 45 37-86
관련논문
- http://arxiv.org/abs/1511.00020
- Schrenk, K. J., and J. D. Stevenson. “Numerical Evaluation of the Gauss Hypergeometric Function: Implementation and Application to Schramm-Loewner Evolution.” arXiv:1502.05624 [cond-Mat, Physics:physics], February 19, 2015. http://arxiv.org/abs/1502.05624.
- On the contiguous relations of hypergeometric series
- Medhat A. Rakha, Adel K. Ibrahim, Journal of Computational and Applied Mathematics, Volume 192, Issue 2, 1 August 2006, Pages 396-410
- Transcendence of periods: the state of the art.
- M. Waldschmidt., Pure Appl. Math. Q. 2 (2006), 435-463.
- Exceptional sets of hypergeometric series
- Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269
- Thorsley, Michael D., and Marita C. Chidichimo. 2001. “An Asymptotic Expansion for the Hypergeometric Function 2F1(a,b;c;x).” Journal of Mathematical Physics 42 (4) (April 1): 1921–1930. doi:doi:10.1063/1.1353185. http://jmp.aip.org/resource/1/jmapaq/v42/i4/p1921_s1
- Special values of the hypergeometric series III
- Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
- Special values of the hypergeometric series II
- Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
- Special values of the hypergeometric series
- Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991) volume: 109 issue: 2 page: 257
- Werte hypergeometrischer funktionen
- Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
노트
말뭉치
- This paper introduces the hypergeo package of R routines, for numerical calculation of hypergeometric functions.[1]
- The package is focussed on ecient and accurate evaluation of the hypergeometric function over the whole of the complex plane within the constraints of xed-precision arithmetic.[1]
- 2 Numerical evaluation of the Gauss hypergeometric function with the hypergeo package when dened.[1]
- Writing a, b, c for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known as the hypergeometric function.[1]
- For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al.[2]
- Elliptic modular functions can sometimes be expressed as the inverse functions of ratios of hypergeometric functions whose arguments a, b, c are 1, 1/2, 1/3, ... or 0.[2]
- We give a basic introduction to the properties of Gauss hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hyperegeo- metric equation.[3]
- Initially this document started as an informal introduction to Gauss hypergeometric functions for those who want to have a quick idea of some main facts on hypergeometric functions.[3]
- To confuse matters even more, the term "hypergeometric function" is less commonly used to mean closed form, and "hypergeometric series" is sometimes used to mean hypergeometric function.[4]
- The hypergeometric functions are solutions to the hypergeometric differential equation, which has a regular singular point at the origin.[4]
- Many functions of mathematical physics can be expressed as special cases of the hypergeometric functions.[4]
- We consider the asymptotic behavior of the Gauss hypergeometric function when several of the parameters a,b,c are large.[5]
- Computes the Gauss hypergeometric function 2F1(a,b;c;z) and its derivative for real z, z<1 by integrating the defining differential equation using the Matlab differential equation solver ode15i.[6]
- The major development of the theory of hypergeometric function was carried out by Gauss and published in his famous work of 1812.[7]
- Almost all of the elementary functions of Mathematics are either hypergeometric, ratios of hypergeometric functions or limiting cases of a hypergeometric series.[7]
- Two hypergeometric functions with the same argument z are contiguous if their parameters a, b and c differ by integers.[7]
- A contiguous relation between any three contiguous hypergeometric functions can be found by combining linearly a sequence of Gauss contiguous relations.[7]
- In this course we will study multivariate hypergeometric functions in the sense of Gelfand, Kapranov, and Zelevinsky (GKZ systems).[8]
- These functions generalize the classical hypergeometric functions of Gauss, Horn, Appell, and Lauricella.[8]
- We end with a brief discussion of the classication problem for rational hypergeometric functions.[8]
- For one-variable hypergeometric functions this interplay has been well understood for several decades.[8]
- Abstract The two most commonly used hypergeometric functions are the conflu- ent hypergeometric function and the Gauss hypergeometric function.[9]
- Except for specific situations, computing hypergeometric functions is difficult in practice.[9]
- (a)j (b)j zj j ! , which is also commonly denoted by M(a; b; z) and is itself often called the confluent hypergeometric function.[9]
- The function 2F1(a, b; c; z) is commonly denoted by F (a, b; c; z) and is also fre- quently called the Gauss hypergeometric function.[9]
- We nd that, for both the conuent and Gauss hypergeometric functions, there is no simple answer to the problem of their computation, and dierent methods are optimal for dierent parameter regimes.[10]
- 3.3 Writing the conuent hypergeometric function as a single fraction . . . . . .[10]
- 4.3 Writing the Gauss hypergeometric function as a single fraction .[10]
- The computation of the hypergeometric function pFq, a special function encountered in a variety of applications, is frequently sought.[10]
- Returns hyp2f1 scalar or ndarray The values of the gaussian hypergeometric function.[11]
- Using (41) and subordination property, we have thatBy adopting (13) and (64), we obtainApplying hypergeometric function (59), we obtain the upper bound for the case .[12]
- Recently, there has been a clear interest on Bessel and hypergeometric functions from the point of view of geometric function theory.[12]
- A hypergeometric function is the sum of a hypergeometric series, which is dened as follows.[13]
- When one of the numerator parameters ai equals N , where N is a nonnegative integer, the hypergeometric function is a polynomial in z (see below).[13]
- Sometimes the most general hypergeometric function pFq is called a generalized hypergeo- metric function.[13]
- For the hypergeometric function 2F1 we have an integral representation due to Euler: Theorem 1.[13]
- This generally speeds up evaluation by producing a hypergeometric function of lower order.[14]
- Euler introduced the power series expansion of the form: where a, b, c are rational functions and F(a, b, c, z) is called the hypergeometric function.[15]
- The hypergeometric function takes a prominent position amongst the world of standard mathematical functions used in both pure and applied mathematics.[15]
- Gauss was aware of the multi-valuedness of the hypergeometric functions, known in recent times as the monodromy problem.[15]
- The modern notation for the Gauss hypergeometric function is according to Barnes (1908).[15]
- The classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.[16]
- This paper claims that the natural logarithm can be represented by the Gaussian hypergeometric function.[17]
- We establish two quadratic transformations for Gauss hypergeometric function in terms of nite summation of combination of two Clausen hypergeometric functions.[18]
- Further, we have generalized our quadratic transformations in terms of general double series identities as well as in terms of reduction formulas for Kamp de Friets double hypergeometric function.[18]
- The Hypergeometric functions of two variables was introduced by Appell (1880) and Lauricella (1893) generalized them to several variables.[18]
- It is interesting to mention here that the results are very important for the application point of view, whenever hypergeometric functions reduce to gamma functions.[18]
- In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functions .[19]
- For , and , we have where the , a special case of the generalized hypergeometric function (10), is the Gauss hypergeometric function.[19]
- Further, if we set and in Theorems 1 to 5 or make use of the result (8), we obtain various integral transforms and fractional integral formulas for the Gauss hypergeometric function .[19]
- This a hypergeometric equation with constants a, b and c dened by F = c, G = (a + b + 1) and H = ab and can therefore be solved near t = 0 and t = 1 in terms of the hypergeometric function.[20]
- Problems: Find the general solution of each of the following dierential equations near the indicated singular point in terms of hypergeometric function.[20]
- However, the hypergeometric function is defined over the whole of the complex plane, so analytic continuation may be used if appropriate cut lines are used.[21]
- Gausss hypergeometric function gives a modular parame- terization of period integrals of elliptic curves in Legendre normal form E() : y2 = x(x 1)(x ).[22]
- Legendre elliptic curves, hypergeometric functions.[22]
- Hypergeometric functions are rarely in a form in which these formulae can be applied directly.[23]
- Writing sums as hypergeometric functions has the great advantage of simplifying manipulation by computer algebraic methods.[23]
- It is assumed that the hypergeometric functions are convergent and do not contain negative integers in the bottom parameter list.[23]
- A particular solution of Gausss hypergeometric differential equation (1) is known as Gausss hypergeometric function or simply hypergeometric function.[24]
- 2 F 1 ( a , b , c , z ) Regularized Gauss hypergeometric function RisingFactorial ( z ) k \left(z\right)_{k} ( z ) k Rising factorial Pow a b {a}^{b} a b Power Factorial n ! n ![25]
- The hypergeometric functions are solutions to the Hypergeometric Differential Equation, which has a Regular Singular Point at the Origin.[26]
소스
- ↑ 1.0 1.1 1.2 1.3 Numerical evaluation of the gauss hypergeometric
- ↑ 2.0 2.1 Hypergeometric function
- ↑ 3.0 3.1 Gauss’ hypergeometric function
- ↑ 4.0 4.1 4.2 Hypergeometric Function -- from Wolfram MathWorld
- ↑ Large parameter cases of the Gauss hypergeometric function
- ↑ Gauss Hypergeometric Function
- ↑ 7.0 7.1 7.2 7.3 Computers and mathematics with applications 61 (2011) 620–629
- ↑ 8.0 8.1 8.2 8.3 Three lectures on hypergeometric functions
- ↑ 9.0 9.1 9.2 9.3 Numer algor
- ↑ 10.0 10.1 10.2 10.3 Computation of
- ↑ scipy.special.hyp2f1 — SciPy v1.6.1 Reference Guide
- ↑ 12.0 12.1 (PDF) An integral representation of some hypergeometric functions
- ↑ 13.0 13.1 13.2 13.3 Hypergeometric functions
- ↑ Hypergeometric functions — mpmath 1.2.0 documentation
- ↑ 15.0 15.1 15.2 15.3 Hypergeometric series
- ↑ Algebraic transformations of Gauss hypergeometric functions
- ↑ Proof that the Natural Logarithm Can Be Represented by the Gaussian Hypergeometric Function by Christopher Paul Nofal :: SSRN
- ↑ 18.0 18.1 18.2 18.3 Special issue no. 6 (april 2020), pp. 71 – 86
- ↑ 19.0 19.1 19.2 Certain Integral Transform and Fractional Integral Formulas for the Generalized Gauss Hypergeometric Functions
- ↑ 20.0 20.1 Gauss’s hypergeometric equation
- ↑ hypergeo: The hypergeometric function in hypergeo: The Gauss Hypergeometric Function
- ↑ 22.0 22.1 Gauss’s 2f1 hypergeometric function and the
- ↑ 23.0 23.1 23.2 J. phys. a: math. gen. 21 (1988) 1983-1998. printed in the u k
- ↑ [1]
- ↑ Gauss hypergeometric function
- ↑ Hypergeometric Function
메타데이터
위키데이터
- ID : Q21028472
Spacy 패턴 목록
- [{'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
- [{'LOWER': 'gaussian'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]
- [{'LOWER': 'ordinary'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'function'}]