"펠 방정식(Pell's equation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터) |
|||
(사용자 2명의 중간 판 39개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | + | * <math>x^2-dy^2=1</math> (<math>d</math> 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * <math>x^2-dy^2= | ||
* [[연분수와 유리수 근사|연분수]] 전개를 통하여 모든 해를 구할 수 있음 | * [[연분수와 유리수 근사|연분수]] 전개를 통하여 모든 해를 구할 수 있음 | ||
* 해의 집합은 군의 구조를 통하여 이해할 수 있음 | * 해의 집합은 군의 구조를 통하여 이해할 수 있음 | ||
− | * 실수 이차 수체의 unit 을 구하는 문제와 같음 | + | * <math>x^2-dy^2=\pm 1</math> 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음 |
− | + | ||
− | + | ||
− | + | ==연분수 전개와 fundamental solution== | |
− | * <math> | + | * <math>\sqrt{d}</math> 를 [[연분수와 유리수 근사|연분수]] 전개할때 얻어지는 convergents <math>{h_i}/{k_i}</math> 가 펠 방정식의 해가 되는 <math>x=h_i, y=k_i</math> 를 찾을 수 있으며, 이 때 <math>x</math>값을 가장 작게 하는 해를 fundamental solution 이라 한다. |
− | + | ;정리 | |
− | + | 펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. | |
− | + | ;증명 | |
− | + | [[연분수와 유리수 근사]] 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다 | |
− | |||
− | + | 무리수 <math>\alpha</math>에 대하여, 유리수 <math>p/q</math>가 아래의 부등식을 만족시키는 경우, <math>p/q</math>는 무리수 <math>\alpha</math>의 단순연분수 전개의 convergents 중의 하나이다 | |
+ | :<math>|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}</math> | ||
− | + | 이 정리를 이용하자. | |
− | < | + | 펠 방정식 <math>x_ {1}^2-dy_ {1}^2=1</math>의 정수해 <math>(x_1,y_1)</math>는 |
+ | :<math>x_ {1}^2-dy_ {1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1</math>를 만족시키므로, | ||
+ | :<math>|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}</math> | ||
+ | :<math>|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_ {1}^{2}}\leq \frac{1}{2y_ {1}^{2}}</math> | ||
− | + | 따라서, 펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. ■ | |
− | + | ||
+ | ==예== | ||
+ | ===d=7인 경우=== | ||
− | + | * <math>\sqrt{7}</math>의 연분수 전개를 통한 유리수근사:<math>\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots</math> | |
+ | * 펠 방정식의 해 찾기:<math>2^2-d\cdot 1^2=-3</math>:<math>3^2-d\cdot 1^2=2</math>:<math>5^2-d\cdot 2^2=-3</math>:<math>8^2-d\cdot 3^2=1</math>:<math>37^2-d\cdot 14^2=-3</math> | ||
+ | * 따라서 펠 방정식 <math>x^2-7y^2=1</math>의 fundamental solution 은 <math>(8,3)</math> 이된다 | ||
− | + | ||
− | + | ===d=13=== | |
− | * | + | * fundamental solution <math>(x_ 1,y_ 1)</math> 가 <math>y_ 1>6</math> 를 만족시키는 가장 작은 d |
− | + | * <math>649^2-13\cdot180^2=1</math> | |
− | |||
− | + | ||
− | + | ||
− | + | ===d=61=== | |
− | + | ||
− | + | ||
− | + | ===d=109=== | |
− | + | * 페르마의 문제 | |
+ | * <math>158070671986249^2 -109\cdot15140424455100^2=1</math> | ||
− | + | ||
− | + | ==역사== | |
− | |||
− | |||
− | |||
− | + | * [[수학사 연표]] | |
− | + | ||
− | + | ==관련된 항목들== | |
− | * [ | + | * [[이차 수체(quadratic number fields) 의 정수론]] |
− | * [ | + | * [[연분수와 유리수 근사]] |
− | * | + | * [[2의 제곱근(루트 2, 피타고라스 상수)]] |
− | * [ | + | * [[체비셰프 다항식]] |
− | * [ | + | * [[루카스 수열]] |
− | |||
− | |||
− | + | ==매스매티카 파일 및 계산 리소스== | |
− | + | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxNTU4ZmMyMmQtMjNkZi00YWIwLWIzM2ItNzNiNTQ2YTRkMWY1&sort=name&layout=list&num=50 | |
+ | * [http://projecteuler.net/problem=66 Project Euler, Problem 66] | ||
− | |||
− | |||
− | + | ==사전 형태의 자료== | |
− | + | * http://ko.wikipedia.org/wiki/펠방정식 | |
+ | * http://en.wikipedia.org/wiki/Pell's_equation | ||
− | + | ||
− | + | ==리뷰, 에세이, 강의노트== | |
− | * | + | * Lemmermeyer, Franz. 2003. “Conics - a Poor Man’s Elliptic Curves.” arXiv:math/0311306 (November 18). http://arxiv.org/abs/math/0311306. |
− | + | * [http://www.ams.org/notices/200202/fea-lenstra.pdf Solving the Pell Equation]H. W. Lenstra Jr. Notices of the AMS 49 (2002), 182-92 | |
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | + | ==관련논문== | |
+ | * Lehmer, D. H. 1928. On the Multiple Solutions of the Pell Equation. The Annals of Mathematics 30, no. 1/4. Second Series (January 1): 66-72. doi:[http://dx.doi.org/10.2307/1968268 10.2307/1968268]. | ||
− | |||
− | + | [[분류:초등정수론]] | |
− | + | [[분류:디오판투스 방정식]] | |
− | |||
− | |||
− | + | == 노트 == | |
− | + | ===말뭉치=== | |
+ | # We can now see that is a nontrivial solution to pell's equation.<ref name="ref_f63d2248">[https://artofproblemsolving.com/wiki/index.php/Pell_equation Art of Problem Solving]</ref> | ||
+ | # Therefore, such cannot exist and so the method of composition generates every possible solution to Pell's equation.<ref name="ref_f63d2248" /> | ||
+ | # According to Itô (1987), this equation can be solved completely using solutions to Pell's equation.<ref name="ref_cba6b0ff">[https://mathworld.wolfram.com/PellEquation.html Pell Equation -- from Wolfram MathWorld]</ref> | ||
+ | # In this section we will concentrate on solutions to Pell's equation for the case where N = 1 and d > 0.<ref name="ref_fcc71f14">[https://www.math.uh.edu/~minru/web/pell4.html Section 13.4: "Pell's Equation"]</ref> | ||
+ | # Hence we will look for solutions to Pell's equation in positive integers x and y. Suppose that we had such a solution.<ref name="ref_fcc71f14" /> | ||
+ | # Therefore a solution to Pell's equation will give us a good rational approximation to .<ref name="ref_fcc71f14" /> | ||
+ | # Those terms with second entry equal to 1 indicate solutions to Pell's equation.<ref name="ref_fcc71f14" /> | ||
+ | # Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions.<ref name="ref_e3e7603e">[https://en.wikipedia.org/wiki/Pell%27s_equation Pell's equation]</ref> | ||
+ | # William Brouncker was the first European to solve Pell's equation.<ref name="ref_e3e7603e" /> | ||
+ | # Then the pair ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} solving Pell's equation and minimizing x satisfies x 1 = h i and y 1 = k i for some i. This pair is called the fundamental solution.<ref name="ref_e3e7603e" /> | ||
+ | # By this we mean simply: did Pell contribute at all to the study of Pell 's equation?<ref name="ref_0445b164">[https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/ Pell's equation]</ref> | ||
+ | # First let us say what Pell 's equation is.<ref name="ref_0445b164" /> | ||
+ | # In fact this method of composition allowed Brahmagupta to make a number of fundamental discoveries regarding Pell 's equation.<ref name="ref_0445b164" /> | ||
+ | # One property that he deduced was that ifsatisfies Pell 's equation so does.<ref name="ref_0445b164" /> | ||
+ | # It is well known that there exist an infinite number of integer solutions to the equation Dx^2+1=y^2 , known as Pell's equation .<ref name="ref_b3e84e09">[http://sweet.ua.pt/tos/pell.html Pell's equation]</ref> | ||
+ | # Results concerning Pell's equation will be stated without proof.<ref name="ref_5e86d61f">[https://en.wiktionary.org/wiki/Pell%27s_equation Pell's equation]</ref> | ||
+ | # This article gives the basic theory of Pell's equation x2 = 1 + D y2, where D ∈ ℕ is a parameter and x, y are integer variables.<ref name="ref_b703b1cb">[https://www.isa-afp.org/entries/Pell.html Pell's Equation]</ref> | ||
+ | # The first part will discuss the history of Pell's Equation.<ref name="ref_316e6309">[https://repository.tcu.edu/handle/116099117/7234 Pell's Equation: History, Methods, and Number Theory]</ref> | ||
+ | # Pell's Equation is an equation of the form x^2 - Dy^2 = 1, where x and y are variables in which integer solutions are sought and D is an integer.<ref name="ref_316e6309" /> | ||
+ | # We will then go into how Pell's Equation has even a longer history in India.<ref name="ref_316e6309" /> | ||
+ | # We will conclude this part by describing how Pell's Equation was known even in the time of Archimedes.<ref name="ref_316e6309" /> | ||
+ | # The name of Pell's equation arose from Leonhard Euler's mistakenly attributing its study to John Pell.<ref name="ref_f557b511">[https://www.definitions.net/definition/pell%27s+equation What does pell's equation mean?]</ref> | ||
+ | # Bhaskara II in the 12th century and Narayana Pandit in the 14th century both found general solutions to Pell's equation and other quadratic indeterminate equations.<ref name="ref_f557b511" /> | ||
+ | # Task requirements find the smallest solution in positive integers to Pell's equation for n = {61, 109, 181, 277}.<ref name="ref_89ad567d">[https://rosettacode.org/wiki/Pell%27s_equation Pell's equation]</ref> | ||
+ | # Thus, it got reduced to our Pell's Equation.<ref name="ref_388c2ce4">[http://reports.ias.ac.in/report/19831/pells-equation-and-rational-points-on-elliptic-curve Pell's equation and Rational points on elliptic curve]</ref> | ||
+ | # When n is non-square, Pell's Equation has infinitely many solution pairs (X, Y), all of which can be generated by a single fundamental solution (X 1 , Y 1 ).<ref name="ref_8cd589b1">[https://www.had2know.org/academics/pell-equation-calculator.html Solutions to X^2 - nY^2 = 1]</ref> | ||
+ | # To apply this method to solve Pell's equation, you simply compute the continued fraction of sqrt(n) and stop when the expansion begins to repeat.<ref name="ref_8cd589b1" /> | ||
+ | # Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields.<ref name="ref_81d4534d">[https://www.goodreads.com/book/show/14361174-pell-s-equation Pell's Equation]</ref> | ||
+ | ===소스=== | ||
+ | <references /> | ||
− | + | == 메타데이터 == | |
− | + | ===위키데이터=== | |
− | * [ | + | * ID : [https://www.wikidata.org/wiki/Q853067 Q853067] |
− | * [ | + | ===Spacy 패턴 목록=== |
− | + | * [{'LOWER': 'pell'}, {'LOWER': "'s"}, {'LEMMA': 'equation'}] |
2022년 7월 6일 (수) 20:23 기준 최신판
개요
- \(x^2-dy^2=1\) (\(d\) 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
- 연분수 전개를 통하여 모든 해를 구할 수 있음
- 해의 집합은 군의 구조를 통하여 이해할 수 있음
- \(x^2-dy^2=\pm 1\) 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음
연분수 전개와 fundamental solution
- \(\sqrt{d}\) 를 연분수 전개할때 얻어지는 convergents \({h_i}/{k_i}\) 가 펠 방정식의 해가 되는 \(x=h_i, y=k_i\) 를 찾을 수 있으며, 이 때 \(x\)값을 가장 작게 하는 해를 fundamental solution 이라 한다.
- 정리
펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다.
- 증명
연분수와 유리수 근사 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다
무리수 \(\alpha\)에 대하여, 유리수 \(p/q\)가 아래의 부등식을 만족시키는 경우, \(p/q\)는 무리수 \(\alpha\)의 단순연분수 전개의 convergents 중의 하나이다 \[|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}\]
이 정리를 이용하자.
펠 방정식 \(x_ {1}^2-dy_ {1}^2=1\)의 정수해 \((x_1,y_1)\)는 \[x_ {1}^2-dy_ {1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1\]를 만족시키므로, \[|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}\] \[|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_ {1}^{2}}\leq \frac{1}{2y_ {1}^{2}}\]
따라서, 펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. ■
예
d=7인 경우
- \(\sqrt{7}\)의 연분수 전개를 통한 유리수근사\[\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots\]
- 펠 방정식의 해 찾기\[2^2-d\cdot 1^2=-3\]\[3^2-d\cdot 1^2=2\]\[5^2-d\cdot 2^2=-3\]\[8^2-d\cdot 3^2=1\]\[37^2-d\cdot 14^2=-3\]
- 따라서 펠 방정식 \(x^2-7y^2=1\)의 fundamental solution 은 \((8,3)\) 이된다
d=13
- fundamental solution \((x_ 1,y_ 1)\) 가 \(y_ 1>6\) 를 만족시키는 가장 작은 d
- \(649^2-13\cdot180^2=1\)
d=61
d=109
- 페르마의 문제
- \(158070671986249^2 -109\cdot15140424455100^2=1\)
역사
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxNTU4ZmMyMmQtMjNkZi00YWIwLWIzM2ItNzNiNTQ2YTRkMWY1&sort=name&layout=list&num=50
- Project Euler, Problem 66
사전 형태의 자료
리뷰, 에세이, 강의노트
- Lemmermeyer, Franz. 2003. “Conics - a Poor Man’s Elliptic Curves.” arXiv:math/0311306 (November 18). http://arxiv.org/abs/math/0311306.
- Solving the Pell EquationH. W. Lenstra Jr. Notices of the AMS 49 (2002), 182-92
관련논문
- Lehmer, D. H. 1928. On the Multiple Solutions of the Pell Equation. The Annals of Mathematics 30, no. 1/4. Second Series (January 1): 66-72. doi:10.2307/1968268.
노트
말뭉치
- We can now see that is a nontrivial solution to pell's equation.[1]
- Therefore, such cannot exist and so the method of composition generates every possible solution to Pell's equation.[1]
- According to Itô (1987), this equation can be solved completely using solutions to Pell's equation.[2]
- In this section we will concentrate on solutions to Pell's equation for the case where N = 1 and d > 0.[3]
- Hence we will look for solutions to Pell's equation in positive integers x and y. Suppose that we had such a solution.[3]
- Therefore a solution to Pell's equation will give us a good rational approximation to .[3]
- Those terms with second entry equal to 1 indicate solutions to Pell's equation.[3]
- Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions.[4]
- William Brouncker was the first European to solve Pell's equation.[4]
- Then the pair ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} solving Pell's equation and minimizing x satisfies x 1 = h i and y 1 = k i for some i. This pair is called the fundamental solution.[4]
- By this we mean simply: did Pell contribute at all to the study of Pell 's equation?[5]
- First let us say what Pell 's equation is.[5]
- In fact this method of composition allowed Brahmagupta to make a number of fundamental discoveries regarding Pell 's equation.[5]
- One property that he deduced was that ifsatisfies Pell 's equation so does.[5]
- It is well known that there exist an infinite number of integer solutions to the equation Dx^2+1=y^2 , known as Pell's equation .[6]
- Results concerning Pell's equation will be stated without proof.[7]
- This article gives the basic theory of Pell's equation x2 = 1 + D y2, where D ∈ ℕ is a parameter and x, y are integer variables.[8]
- The first part will discuss the history of Pell's Equation.[9]
- Pell's Equation is an equation of the form x^2 - Dy^2 = 1, where x and y are variables in which integer solutions are sought and D is an integer.[9]
- We will then go into how Pell's Equation has even a longer history in India.[9]
- We will conclude this part by describing how Pell's Equation was known even in the time of Archimedes.[9]
- The name of Pell's equation arose from Leonhard Euler's mistakenly attributing its study to John Pell.[10]
- Bhaskara II in the 12th century and Narayana Pandit in the 14th century both found general solutions to Pell's equation and other quadratic indeterminate equations.[10]
- Task requirements find the smallest solution in positive integers to Pell's equation for n = {61, 109, 181, 277}.[11]
- Thus, it got reduced to our Pell's Equation.[12]
- When n is non-square, Pell's Equation has infinitely many solution pairs (X, Y), all of which can be generated by a single fundamental solution (X 1 , Y 1 ).[13]
- To apply this method to solve Pell's equation, you simply compute the continued fraction of sqrt(n) and stop when the expansion begins to repeat.[13]
- Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields.[14]
소스
- ↑ 1.0 1.1 Art of Problem Solving
- ↑ Pell Equation -- from Wolfram MathWorld
- ↑ 3.0 3.1 3.2 3.3 Section 13.4: "Pell's Equation"
- ↑ 4.0 4.1 4.2 Pell's equation
- ↑ 5.0 5.1 5.2 5.3 Pell's equation
- ↑ Pell's equation
- ↑ Pell's equation
- ↑ Pell's Equation
- ↑ 9.0 9.1 9.2 9.3 Pell's Equation: History, Methods, and Number Theory
- ↑ 10.0 10.1 What does pell's equation mean?
- ↑ Pell's equation
- ↑ Pell's equation and Rational points on elliptic curve
- ↑ 13.0 13.1 Solutions to X^2 - nY^2 = 1
- ↑ Pell's Equation
메타데이터
위키데이터
- ID : Q853067
Spacy 패턴 목록
- [{'LOWER': 'pell'}, {'LOWER': "'s"}, {'LEMMA': 'equation'}]