"펠 방정식(Pell's equation)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 
 
* [[펠 방정식(Pell's equation)]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
  
 
* <math>x^2-dy^2=1</math> (<math>d</math> 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
 
* <math>x^2-dy^2=1</math> (<math>d</math> 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
14번째 줄: 6번째 줄:
 
* <math>x^2-dy^2=\pm 1</math> 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음
 
* <math>x^2-dy^2=\pm 1</math> 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음
  
 
+
  
 
+
  
<h5>연분수 전개와 fundamental solution</h5>
+
==연분수 전개와 fundamental solution==
  
* <math>\sqrt{d}</math> 를 [[연분수와 유리수 근사|연분수]] 전개할때 얻어지는 convergents <math>{h_i}/{k_i}</math> 가 펠방정식의 해가 되는 <math>x=h_i, y=k_i</math> 를 찾을 수 있으며, 이 때  <math>x</math>값을 가장 작게 하는 해를 fundamental solution 이라 한다.
+
* <math>\sqrt{d}</math> 를 [[연분수와 유리수 근사|연분수]] 전개할때 얻어지는 convergents <math>{h_i}/{k_i}</math> 가 펠 방정식의 해가 되는 <math>x=h_i, y=k_i</math> 를 찾을 수 있으며, 이 때  <math>x</math>값을 가장 작게 하는 해를 fundamental solution 이라 한다.
  
(정리)
+
;정리
  
펠방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다.
+
펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다.
  
(증명)
+
;증명
  
 
[[연분수와 유리수 근사]] 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다
 
[[연분수와 유리수 근사]] 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다
  
무리수 <math>\alpha</math>에 대하여, 유리수 <math>p/q</math>가 아래의 부등식을 만족시키는 경우,  <math>p/q</math>는 무리수 <math>\alpha</math>의 단순연분수 전개의 convergents 중의 하나이다
+
무리수 <math>\alpha</math>에 대하여, 유리수 <math>p/q</math>가 아래의 부등식을 만족시키는 경우, <math>p/q</math>는 무리수 <math>\alpha</math>의 단순연분수 전개의 convergents 중의 하나이다
 
+
:<math>|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}</math>
<math>|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}</math>
 
  
 
이 정리를 이용하자.
 
이 정리를 이용하자.
  
펠방정식의 정수해 <math>x_{1}^2-dy_{1}^2=1</math> 는  <math>x_{1}^2-dy_{1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1</math>를 만족시키므로,
+
펠 방정식 <math>x_ {1}^2-dy_ {1}^2=1</math>의 정수해 <math>(x_1,y_1)</math>는
 +
:<math>x_ {1}^2-dy_ {1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1</math>를 만족시키므로,
 +
:<math>|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}</math>
 +
:<math>|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_ {1}^{2}}\leq \frac{1}{2y_ {1}^{2}}</math>
  
<math>|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}</math>
+
따라서,  펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. ■
  
<math>|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_{1}^{2}}\leq \frac{1}{2y_{1}^{2}}</math>
+
 +
==예==
 +
===d=7인 경우===
  
따라서,  펠방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. ■
+
* <math>\sqrt{7}</math>의 연분수 전개를 통한 유리수근사:<math>\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots</math>
 +
*  펠 방정식의 해 찾기:<math>2^2-d\cdot 1^2=-3</math>:<math>3^2-d\cdot 1^2=2</math>:<math>5^2-d\cdot 2^2=-3</math>:<math>8^2-d\cdot 3^2=1</math>:<math>37^2-d\cdot 14^2=-3</math>
 +
* 따라서 펠 방정식 <math>x^2-7y^2=1</math>의 fundamental solution 은 <math>(8,3)</math> 이된다
  
 
+
  
 
+
===d=13===
  
<h5>d=7인 경우</h5>
+
* fundamental solution <math>(x_ 1,y_ 1)</math> 가 <math>y_ 1>6</math> 를 만족시키는 가장 작은 d
 
 
* <math>\sqrt{7}</math>의 연분수 전개를 통한 유리수근사<br><math>\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots</math><br>
 
*  펠방정식의 해 찾기<br><math>2^2-d\cdot 1^2=-3</math><br><math>3^2-d\cdot 1^2=2</math><br><math>5^2-d\cdot 2^2=-3</math><br><math>8^2-d\cdot 3^2=1</math><br><math>37^2-d\cdot 14^2=-3</math><br>
 
* 따라서 펠방정식 <math>x^2-7y^2=1</math>의 fundamental solution <math>(8,3)</math> 이된다
 
 
 
 
 
 
 
 
 
 
 
<h5>d=13</h5>
 
 
 
* fundamental solution <math>(x_1,y_1)</math> 가 <math>y_1>6</math> 를 만족시키는 가장 작은 d
 
 
* <math>649^2-13\cdot180^2=1</math>
 
* <math>649^2-13\cdot180^2=1</math>
  
 
+
  
 
+
  
<h5>d=61</h5>
+
===d=61===
  
 
+
  
 
+
  
<h5>d=109</h5>
+
===d=109===
  
*  페르마의 문제<br>
+
*  페르마의 문제
* <math>158070671986249^2 -109\cdot15140424455100^2=1</math><br>
+
* <math>158070671986249^2 -109\cdot15140424455100^2=1</math>
  
 
+
  
 
+
==역사==
  
 
+
* [[수학사 연표]]
  
<h5>역사</h5>
+
  
* [[수학사연표 (역사)|수학사연표]]
+
==관련된 항목들==
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5>관련된 항목들</h5>
 
  
 
* [[이차 수체(quadratic number fields) 의 정수론]]
 
* [[이차 수체(quadratic number fields) 의 정수론]]
 
* [[연분수와 유리수 근사]]
 
* [[연분수와 유리수 근사]]
 +
* [[2의 제곱근(루트 2, 피타고라스 상수)]]
 
* [[체비셰프 다항식]]
 
* [[체비셰프 다항식]]
 +
* [[루카스 수열]]
  
 
 
 
 
 
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNTU4ZmMyMmQtMjNkZi00YWIwLWIzM2ItNzNiNTQ2YTRkMWY1&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNTU4ZmMyMmQtMjNkZi00YWIwLWIzM2ItNzNiNTQ2YTRkMWY1&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
+
* [http://projecteuler.net/problem=66 Project Euler, Problem 66]
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
 
 
* [[매스매티카 파일 목록]]
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
  
* [http://ko.wikipedia.org/wiki/%ED%8E%A0%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/펠방정식]
 
* [http://en.wikipedia.org/wiki/Pell%27s_equation http://en.wikipedia.org/wiki/Pell's_equation]
 
  
 
+
==사전 형태의 자료==
  
 
+
* http://ko.wikipedia.org/wiki/펠방정식
 +
* http://en.wikipedia.org/wiki/Pell's_equation
  
<h5>관련논문</h5>
+
  
* [http://arxiv.org/abs/math/0311306 Conics - a Poor Man's Elliptic Curves]Franz Lemmermeyer, arXiv:math/0311306v1<br>
+
==리뷰, 에세이, 강의노트==
* [http://www.ams.org/notices/200202/fea-lenstra.pdf Solving the Pell Equation]H. W. Lenstra Jr. Notices of the AMS 49 (2002), 182–92
+
* Lemmermeyer, Franz. 2003. “Conics - a Poor Man’s Elliptic Curves.” arXiv:math/0311306 (November 18). http://arxiv.org/abs/math/0311306.
* Lehmer, D. H. 1928. On the Multiple Solutions of the Pell Equation. The Annals of Mathematics 30, no. 1/4. Second Series (January 1): 66-72. doi:[http://dx.doi.org/10.2307/1968268 10.2307/1968268]. 
+
* [http://www.ams.org/notices/200202/fea-lenstra.pdf Solving the Pell Equation]H. W. Lenstra Jr. Notices of the AMS 49 (2002), 182-92
* [http://www.jstor.org/action/doBasicSearch?Query=Pell%27s+equation http://www.jstor.org/action/doBasicSearch?Query=Pell's+equation]
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
  
 
 
  
 
+
==관련논문==
 +
* Lehmer, D. H. 1928. On the Multiple Solutions of the Pell Equation. The Annals of Mathematics 30, no. 1/4. Second Series (January 1): 66-72. doi:[http://dx.doi.org/10.2307/1968268 10.2307/1968268].
  
<h5>관련도서 및 추천도서</h5>
 
  
*  도서내검색<br>
+
[[분류:초등정수론]]
** http://books.google.com/books?q=
+
[[분류:디오판투스 방정식]]
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
== 노트 ==
  
 
+
===말뭉치===
 +
# We can now see that is a nontrivial solution to pell's equation.<ref name="ref_f63d2248">[https://artofproblemsolving.com/wiki/index.php/Pell_equation Art of Problem Solving]</ref>
 +
# Therefore, such cannot exist and so the method of composition generates every possible solution to Pell's equation.<ref name="ref_f63d2248" />
 +
# According to Itô (1987), this equation can be solved completely using solutions to Pell's equation.<ref name="ref_cba6b0ff">[https://mathworld.wolfram.com/PellEquation.html Pell Equation -- from Wolfram MathWorld]</ref>
 +
# In this section we will concentrate on solutions to Pell's equation for the case where N = 1 and d > 0.<ref name="ref_fcc71f14">[https://www.math.uh.edu/~minru/web/pell4.html Section 13.4: "Pell's Equation"]</ref>
 +
# Hence we will look for solutions to Pell's equation in positive integers x and y. Suppose that we had such a solution.<ref name="ref_fcc71f14" />
 +
# Therefore a solution to Pell's equation will give us a good rational approximation to .<ref name="ref_fcc71f14" />
 +
# Those terms with second entry equal to 1 indicate solutions to Pell's equation.<ref name="ref_fcc71f14" />
 +
# Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions.<ref name="ref_e3e7603e">[https://en.wikipedia.org/wiki/Pell%27s_equation Pell's equation]</ref>
 +
# William Brouncker was the first European to solve Pell's equation.<ref name="ref_e3e7603e" />
 +
# Then the pair ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} solving Pell's equation and minimizing x satisfies x 1 = h i and y 1 = k i for some i. This pair is called the fundamental solution.<ref name="ref_e3e7603e" />
 +
# By this we mean simply: did Pell contribute at all to the study of Pell 's equation?<ref name="ref_0445b164">[https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/ Pell's equation]</ref>
 +
# First let us say what Pell 's equation is.<ref name="ref_0445b164" />
 +
# In fact this method of composition allowed Brahmagupta to make a number of fundamental discoveries regarding Pell 's equation.<ref name="ref_0445b164" />
 +
# One property that he deduced was that ifsatisfies Pell 's equation so does.<ref name="ref_0445b164" />
 +
# It is well known that there exist an infinite number of integer solutions to the equation Dx^2+1=y^2 , known as Pell's equation .<ref name="ref_b3e84e09">[http://sweet.ua.pt/tos/pell.html Pell's equation]</ref>
 +
# Results concerning Pell's equation will be stated without proof.<ref name="ref_5e86d61f">[https://en.wiktionary.org/wiki/Pell%27s_equation Pell's equation]</ref>
 +
# This article gives the basic theory of Pell's equation x2 = 1 + D y2, where D ∈ ℕ is a parameter and x, y are integer variables.<ref name="ref_b703b1cb">[https://www.isa-afp.org/entries/Pell.html Pell's Equation]</ref>
 +
# The first part will discuss the history of Pell's Equation.<ref name="ref_316e6309">[https://repository.tcu.edu/handle/116099117/7234 Pell's Equation: History, Methods, and Number Theory]</ref>
 +
# Pell's Equation is an equation of the form x^2 - Dy^2 = 1, where x and y are variables in which integer solutions are sought and D is an integer.<ref name="ref_316e6309" />
 +
# We will then go into how Pell's Equation has even a longer history in India.<ref name="ref_316e6309" />
 +
# We will conclude this part by describing how Pell's Equation was known even in the time of Archimedes.<ref name="ref_316e6309" />
 +
# The name of Pell's equation arose from Leonhard Euler's mistakenly attributing its study to John Pell.<ref name="ref_f557b511">[https://www.definitions.net/definition/pell%27s+equation What does pell's equation mean?]</ref>
 +
# Bhaskara II in the 12th century and Narayana Pandit in the 14th century both found general solutions to Pell's equation and other quadratic indeterminate equations.<ref name="ref_f557b511" />
 +
# Task requirements find the smallest solution in positive integers to Pell's equation for n = {61, 109, 181, 277}.<ref name="ref_89ad567d">[https://rosettacode.org/wiki/Pell%27s_equation Pell's equation]</ref>
 +
# Thus, it got reduced to our Pell's Equation.<ref name="ref_388c2ce4">[http://reports.ias.ac.in/report/19831/pells-equation-and-rational-points-on-elliptic-curve Pell's equation and Rational points on elliptic curve]</ref>
 +
# When n is non-square, Pell's Equation has infinitely many solution pairs (X, Y), all of which can be generated by a single fundamental solution (X 1 , Y 1 ).<ref name="ref_8cd589b1">[https://www.had2know.org/academics/pell-equation-calculator.html Solutions to X^2 - nY^2 = 1]</ref>
 +
# To apply this method to solve Pell's equation, you simply compute the continued fraction of sqrt(n) and stop when the expansion begins to repeat.<ref name="ref_8cd589b1" />
 +
# Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields.<ref name="ref_81d4534d">[https://www.goodreads.com/book/show/14361174-pell-s-equation Pell's Equation]</ref>
 +
===소스===
 +
<references />
  
<h5>블로그</h5>
+
== 메타데이터 ==
  
* 구글 블로그 검색 [http://blogsearch.google.com/blogsearch?q=%ED%8E%A0%EB%B0%A9%EC%A0%95%EC%8B%9D http://blogsearch.google.com/blogsearch?q=펠방정식]
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q853067 Q853067]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'pell'}, {'LOWER': "'s"}, {'LEMMA': 'equation'}]

2022년 7월 6일 (수) 20:23 기준 최신판

개요

  • \(x^2-dy^2=1\) (\(d\) 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
  • 연분수 전개를 통하여 모든 해를 구할 수 있음
  • 해의 집합은 군의 구조를 통하여 이해할 수 있음
  • \(x^2-dy^2=\pm 1\) 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음



연분수 전개와 fundamental solution

  • \(\sqrt{d}\) 를 연분수 전개할때 얻어지는 convergents \({h_i}/{k_i}\) 가 펠 방정식의 해가 되는 \(x=h_i, y=k_i\) 를 찾을 수 있으며, 이 때 \(x\)값을 가장 작게 하는 해를 fundamental solution 이라 한다.
정리

펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다.

증명

연분수와 유리수 근사 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다

무리수 \(\alpha\)에 대하여, 유리수 \(p/q\)가 아래의 부등식을 만족시키는 경우, \(p/q\)는 무리수 \(\alpha\)의 단순연분수 전개의 convergents 중의 하나이다 \[|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}\]

이 정리를 이용하자.

펠 방정식 \(x_ {1}^2-dy_ {1}^2=1\)의 정수해 \((x_1,y_1)\)는 \[x_ {1}^2-dy_ {1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1\]를 만족시키므로, \[|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}\] \[|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_ {1}^{2}}\leq \frac{1}{2y_ {1}^{2}}\]

따라서, 펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. ■


d=7인 경우

  • \(\sqrt{7}\)의 연분수 전개를 통한 유리수근사\[\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots\]
  • 펠 방정식의 해 찾기\[2^2-d\cdot 1^2=-3\]\[3^2-d\cdot 1^2=2\]\[5^2-d\cdot 2^2=-3\]\[8^2-d\cdot 3^2=1\]\[37^2-d\cdot 14^2=-3\]
  • 따라서 펠 방정식 \(x^2-7y^2=1\)의 fundamental solution 은 \((8,3)\) 이된다


d=13

  • fundamental solution \((x_ 1,y_ 1)\) 가 \(y_ 1>6\) 를 만족시키는 가장 작은 d
  • \(649^2-13\cdot180^2=1\)



d=61

d=109

  • 페르마의 문제
  • \(158070671986249^2 -109\cdot15140424455100^2=1\)


역사


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Lehmer, D. H. 1928. On the Multiple Solutions of the Pell Equation. The Annals of Mathematics 30, no. 1/4. Second Series (January 1): 66-72. doi:10.2307/1968268.

노트

말뭉치

  1. We can now see that is a nontrivial solution to pell's equation.[1]
  2. Therefore, such cannot exist and so the method of composition generates every possible solution to Pell's equation.[1]
  3. According to Itô (1987), this equation can be solved completely using solutions to Pell's equation.[2]
  4. In this section we will concentrate on solutions to Pell's equation for the case where N = 1 and d > 0.[3]
  5. Hence we will look for solutions to Pell's equation in positive integers x and y. Suppose that we had such a solution.[3]
  6. Therefore a solution to Pell's equation will give us a good rational approximation to .[3]
  7. Those terms with second entry equal to 1 indicate solutions to Pell's equation.[3]
  8. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions.[4]
  9. William Brouncker was the first European to solve Pell's equation.[4]
  10. Then the pair ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} solving Pell's equation and minimizing x satisfies x 1 = h i and y 1 = k i for some i. This pair is called the fundamental solution.[4]
  11. By this we mean simply: did Pell contribute at all to the study of Pell 's equation?[5]
  12. First let us say what Pell 's equation is.[5]
  13. In fact this method of composition allowed Brahmagupta to make a number of fundamental discoveries regarding Pell 's equation.[5]
  14. One property that he deduced was that ifsatisfies Pell 's equation so does.[5]
  15. It is well known that there exist an infinite number of integer solutions to the equation Dx^2+1=y^2 , known as Pell's equation .[6]
  16. Results concerning Pell's equation will be stated without proof.[7]
  17. This article gives the basic theory of Pell's equation x2 = 1 + D y2, where D ∈ ℕ is a parameter and x, y are integer variables.[8]
  18. The first part will discuss the history of Pell's Equation.[9]
  19. Pell's Equation is an equation of the form x^2 - Dy^2 = 1, where x and y are variables in which integer solutions are sought and D is an integer.[9]
  20. We will then go into how Pell's Equation has even a longer history in India.[9]
  21. We will conclude this part by describing how Pell's Equation was known even in the time of Archimedes.[9]
  22. The name of Pell's equation arose from Leonhard Euler's mistakenly attributing its study to John Pell.[10]
  23. Bhaskara II in the 12th century and Narayana Pandit in the 14th century both found general solutions to Pell's equation and other quadratic indeterminate equations.[10]
  24. Task requirements find the smallest solution in positive integers to Pell's equation for n = {61, 109, 181, 277}.[11]
  25. Thus, it got reduced to our Pell's Equation.[12]
  26. When n is non-square, Pell's Equation has infinitely many solution pairs (X, Y), all of which can be generated by a single fundamental solution (X 1 , Y 1 ).[13]
  27. To apply this method to solve Pell's equation, you simply compute the continued fraction of sqrt(n) and stop when the expansion begins to repeat.[13]
  28. Pell's equation is an important topic of algebraic number theory that involves quadratic forms and the structure of rings of integers in algebraic number fields.[14]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'pell'}, {'LOWER': "'s"}, {'LEMMA': 'equation'}]