"미분형식 (differential forms)과 다변수 미적분학"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 이름을 Multilinear algebra와 미분형식 (differential forms)로 바꾸었습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 43개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | * [ | + | ==개요== |
− | ** | + | * 미분형식을 통하여 다변수미적분학의 내용을 새롭게 쓸 수 있다 |
− | ** < | + | * 3차원 공간에 정의된 스칼라함수와 벡터장을 3차원 공간에 정의된 미분형식으로 이해 |
− | * [http://www.jstor.org/stable/2688847 Covariant and Contravariant Vectors] | + | * 미분연산자는 미분형식 사이에 정의되는 사상으로 이해할 수 있다 |
− | ** | + | |
− | + | ||
− | * [http://www.jstor.org/stable/2687253 Differential Forms for Constrained Max-Min Problems: Eliminating Lagrange Multipliers] | + | |
− | ** Frank Zizza | + | ==미분연산자== |
− | + | ||
− | * [http://www.jstor.org/stable/2307716 What are Tensors?] | + | * [[미분연산자]] |
− | ** Peter Scherk and Michael Kwizak | + | ===grad=== |
− | + | * 스칼라 함수 <math>f</math>에 대하여, <math>\operatorname{grad}(f) = \nabla f</math>는 다음과 같이 정의되는 벡터장이다 | |
+ | :<math> | ||
+ | \nabla f=( f_x, f_y,f_z) | ||
+ | </math> | ||
+ | * 벡터장 <math>\nabla f=( f_x, f_y,f_z)</math> 를 1-형식 <math>f_x\, {d}x + f_y\, {d}y+f_z\,dz</math>로 생각하자 | ||
+ | * <math>\operatorname{grad}(f) = \nabla f</math> 는 스칼라 함수를 1-형식으로 보내는 다음과 같은 사상으로 이해할 수 있다 | ||
+ | :<math>d_0=\nabla : f\mapsto f_x\, {d}x + f_y\, {d}y+f_z\,dz</math> | ||
+ | ===curl=== | ||
+ | * 벡터장 <math>\mathbf{F}=(F_1,F_2,F_3)</math>에 대하여, <math>\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F}</math> 는 다음과 같이 정의되는 벡터장이다 | ||
+ | :<math>\nabla\times \mathbf{F}=\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}</math> | ||
+ | * <math>\mathbf{F}</math>를 1-형식 <math>F_1dx+F_2dy+F_3dz</math>, <math>\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}</math>를 다음과 같은 2-형식으로 생각하자 | ||
+ | :<math>\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy\wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz\wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx\wedge dy</math> | ||
+ | * 이로부터 curl, <math>\nabla\times</math> 는 1-형식을 2-형식으로 보내는 다음과 같은 사상으로 이해할 수 있다 | ||
+ | :<math>d_1:F_1dx+F_2dy+F_3dz\mapsto \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy\wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz\wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx\wedge dy</math> | ||
+ | ===div=== | ||
+ | * 벡터장 <math>\mathbf{F}=(F_1, F_2,F_3)</math>에 대하여, <math>\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F}</math>는 다음과 같이 정의된 스칼라 함수이다 | ||
+ | :<math> | ||
+ | \nabla \cdot \mathbf{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z} | ||
+ | </math> | ||
+ | * 벡터장 <math>\mathbf{F}=(F_1, F_2,F_3)</math>를 2-형식 <math>F_1 dy \wedge dz +F_2 dz \wedge dx +F_3 dx \wedge dy</math>로, 스칼라 함수 <math>\nabla \cdot \mathbf{F}</math>를 다음과 같은 3-형식으로 생각하자 | ||
+ | :<math> | ||
+ | \left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dx\wedge dy\wedge dz | ||
+ | </math> | ||
+ | * 미분연산자 div는 2-형식을 -3형식으로 보내는 다음과 같은 사상으로 이해할 수 있다 | ||
+ | :<math> | ||
+ | d_2 : F_1 dy \wedge dz +F_2 dz \wedge dx +F_3 dx \wedge dy \mapsto \left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dx\wedge dy\wedge dz | ||
+ | </math> | ||
+ | |||
+ | ===성질=== | ||
+ | * 임의의 스칼라 함수 <math>f</math>와 벡터장 <math>\mathbf{F}</math>에 대하여, 다음이 성립한다 | ||
+ | :<math> | ||
+ | \nabla \times (\nabla f)=0\\ | ||
+ | \nabla \cdot (\nabla \times \mathbf{F})=0 | ||
+ | </math> | ||
+ | * 미분연산자를 미분형식에 정의되는 사상으로 이해하면, 이를 다음과 같이 다시 쓸 수 있다 | ||
+ | :<math> | ||
+ | d_1\circ d_0=d_2\circ d_1=0 | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ==1-형식의 적분== | ||
+ | |||
+ | * 곡선 <math>C</math>의 매개화가 <math>\mathbf{r}(t)=( x(t), y(t), z(t)), \quad a\leq t \leq b</math>로 주어지는 경우 | ||
+ | * 1-form <math>\omega=P\, {d}x + Q\, {d}y+R\,dz</math> | ||
+ | * 곡선 C 위에서 1-형식의 적분은 다음과 같이 정의된다 | ||
+ | :<math>\int_{C}\omega=\int_{a}^{b} \left(P(\mathbf{r}(t))\frac{dx}{dt}+Q(\mathbf{r}(t))\frac{dy}{dt}+R(\mathbf{r}(t))\frac{dz}{dt}\right) \,dt</math> | ||
+ | * 곡선 C 위에서 1-형식<math>\omega=P\, {d}x + Q\, {d}y+R\,dz</math>의 적분은 벡터장<math>\mathbf{F}=(P,Q,R)</math>의 선적분과 같다 | ||
+ | :<math>\int_{C}\mathbf{F}\cdot d\mathbf{r}=\int_{C}\omega</math> | ||
+ | |||
+ | ;증명 | ||
+ | :<math>\int_{C}\mathbf{F}\cdot d\mathbf{r}=\int_{a}^{b}\mathbf{F}(\mathbf{r}(t))\cdot \mathbf{r}'(t) \, dt=\int_{a}^{b}\left(P(\mathbf{r}(t))\frac{dx}{dt}+Q(\mathbf{r}(t))\frac{dy}{dt}+R(\mathbf{r}(t))\frac{dz}{dt}\right) \,dt=\int_{C}\omega</math> ■ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==2-형식의 적분== | ||
+ | |||
+ | * 3차원의 매개곡면 <math>S</math>, <math>\mathbf{r} (u,v)=( x(u,v), y(u,v), z(u,v)),\quad (u,v)\in D</math> | ||
+ | * 2-form <math>\omega= F_1\, dy \wedge dz + F_2\, dz \wedge dx+F_3\, dx \wedge dy</math> | ||
+ | * S 위에서 2-형식의 적분은 다음과 같이 정의된다:<math>\iint_{S}\omega=\iint_D \left[ F_{1} ( \mathbf{r} (u,v))\frac{\partial(y,z)}{\partial(u,v)} + F_{2} ( \mathbf{r} (u,v))\frac{\partial(z,x)}{\partial(u,v)}F_{3} ( \mathbf{r} (u,v)) \frac{\partial(x,y)}{\partial(u,v)} \right]\, du\, dv</math> | ||
+ | * 곡면 S위에서 2-형식 <math>\omega= F_1\, dy \wedge dz + F_2\, dz \wedge dx+F_3\, dx \wedge dy</math>의 적분은 벡터장<math>\mathbf{F}=(F_1,F_2,F_3)</math>의 적분과 같다:<math>\iint_S\ \mathbf{F}\cdot\,d\mathbf{S}=\iint_{S}\omega</math> | ||
+ | |||
+ | ;증명 | ||
+ | 다음을 관찰하자 | ||
+ | :<math>{\partial \mathbf{r} \over \partial u}\times {\partial \mathbf{r} \over \partial v}=\left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v))}\right)</math> | ||
+ | 다음을 얻는다 | ||
+ | :<math>\iint_S\ \mathbf{F}\cdot\,d\mathbf{S}=\iint_D (F_1,F_2,F_3)\cdot ({\partial \mathbf{x} \over \partial u}\times {\partial \mathbf{x} \over \partial v})\, du\, dv=\iint_{S}\omega</math>. ■ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==응용1. 스토크스 정리== | ||
+ | |||
+ | * [[스토크스 정리]] | ||
+ | :<math>\int_S d\omega = \int_{\partial S} \omega</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | * [[다변수미적분학]] | ||
+ | ** [[벡터의 외적(cross product)]] | ||
+ | ** 스토크스정리의 일반화 | ||
+ | * [[선형대수학]] | ||
+ | ** [[행렬식]] | ||
+ | * [[미분기하학]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==수학용어번역== | ||
+ | |||
+ | * {{학술용어집|url=gradient}} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==사전형태의 자료== | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/미분형식 | ||
+ | * http://en.wikipedia.org/wiki/Differential_forms | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | |||
+ | * [http://www.jstor.org/stable/2688847 Covariant and Contravariant Vectors] | ||
+ | ** S. R. Deans, <cite>Mathematics Magazine</cite>, Vol. 44, No. 1 (Jan., 1971), pp. 5-8 | ||
+ | * [http://www.jstor.org/stable/2687253 Differential Forms for Constrained Max-Min Problems: Eliminating Lagrange Multipliers] | ||
+ | ** Frank Zizza, <cite>The College Mathematics Journal</cite>, Vol. 29, No. 5 (Nov., 1998), pp. 387-396 | ||
+ | * [http://www.jstor.org/stable/2307716 What are Tensors?] | ||
+ | ** Peter Scherk and Michael Kwizak, <cite>The American Mathematical Monthly</cite>, Vol. 58, No. 5 (May, 1951), pp. 297-305 | ||
+ | * [http://www.jstor.org/stable/2695706 Differential Forms, the Early Days; or the Stories of Deahna's Theorem and of Volterra's Theorem] | ||
+ | ** Hans Samelson, <cite>The American Mathematical Monthly</cite>, Vol. 108, No. 6 (Jun. - Jul., 2001), pp. 522-530 | ||
+ | |||
+ | |||
+ | |||
+ | ==관련도서== | ||
+ | |||
+ | * [http://www.amazon.com/Differential-Forms-Applications-Universitext-Manfredo/dp/3540576185 Differential Forms and Applications] | ||
+ | ** Manfredo P. Do Carmo | ||
+ | * [http://www.amazon.com/Calculus-Cohomology-Rham-Characteristic-Classes/dp/0521589568 From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes] | ||
+ | ** Ib H. Madsen (Author), Jxrgen Tornehave | ||
+ | ** 뒷부분은 학부생이 보기에 다소 어렵지만, 앞부분만으로도 가치가 있음. | ||
+ | |||
+ | [[분류:교과목]] | ||
+ | [[분류:미적분학]] | ||
+ | |||
+ | == 리뷰, 에세이, 강의노트 == | ||
+ | |||
+ | * Lorenzo Sadun, Lecture Notes on Differential Forms, arXiv:1604.07862 [math.AT], April 26 2016, http://arxiv.org/abs/1604.07862 | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q1047080 Q1047080] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'differential'}, {'LEMMA': 'form'}] |
2021년 2월 17일 (수) 04:44 기준 최신판
개요
- 미분형식을 통하여 다변수미적분학의 내용을 새롭게 쓸 수 있다
- 3차원 공간에 정의된 스칼라함수와 벡터장을 3차원 공간에 정의된 미분형식으로 이해
- 미분연산자는 미분형식 사이에 정의되는 사상으로 이해할 수 있다
미분연산자
grad
- 스칼라 함수 \(f\)에 대하여, \(\operatorname{grad}(f) = \nabla f\)는 다음과 같이 정의되는 벡터장이다
\[ \nabla f=( f_x, f_y,f_z) \]
- 벡터장 \(\nabla f=( f_x, f_y,f_z)\) 를 1-형식 \(f_x\, {d}x + f_y\, {d}y+f_z\,dz\)로 생각하자
- \(\operatorname{grad}(f) = \nabla f\) 는 스칼라 함수를 1-형식으로 보내는 다음과 같은 사상으로 이해할 수 있다
\[d_0=\nabla : f\mapsto f_x\, {d}x + f_y\, {d}y+f_z\,dz\]
curl
- 벡터장 \(\mathbf{F}=(F_1,F_2,F_3)\)에 대하여, \(\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F}\) 는 다음과 같이 정의되는 벡터장이다
\[\nabla\times \mathbf{F}=\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}\]
- \(\mathbf{F}\)를 1-형식 \(F_1dx+F_2dy+F_3dz\), \(\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}\)를 다음과 같은 2-형식으로 생각하자
\[\left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy\wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz\wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx\wedge dy\]
- 이로부터 curl, \(\nabla\times\) 는 1-형식을 2-형식으로 보내는 다음과 같은 사상으로 이해할 수 있다
\[d_1:F_1dx+F_2dy+F_3dz\mapsto \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) dy\wedge dz + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) dz\wedge dx + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dx\wedge dy\]
div
- 벡터장 \(\mathbf{F}=(F_1, F_2,F_3)\)에 대하여, \(\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F}\)는 다음과 같이 정의된 스칼라 함수이다
\[ \nabla \cdot \mathbf{F}=\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z} \]
- 벡터장 \(\mathbf{F}=(F_1, F_2,F_3)\)를 2-형식 \(F_1 dy \wedge dz +F_2 dz \wedge dx +F_3 dx \wedge dy\)로, 스칼라 함수 \(\nabla \cdot \mathbf{F}\)를 다음과 같은 3-형식으로 생각하자
\[ \left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dx\wedge dy\wedge dz \]
- 미분연산자 div는 2-형식을 -3형식으로 보내는 다음과 같은 사상으로 이해할 수 있다
\[ d_2 : F_1 dy \wedge dz +F_2 dz \wedge dx +F_3 dx \wedge dy \mapsto \left(\frac{\partial F_1}{\partial x}+\frac{\partial F_2}{\partial y}+\frac{\partial F_3}{\partial z}\right)dx\wedge dy\wedge dz \]
성질
- 임의의 스칼라 함수 \(f\)와 벡터장 \(\mathbf{F}\)에 대하여, 다음이 성립한다
\[ \nabla \times (\nabla f)=0\\ \nabla \cdot (\nabla \times \mathbf{F})=0 \]
- 미분연산자를 미분형식에 정의되는 사상으로 이해하면, 이를 다음과 같이 다시 쓸 수 있다
\[ d_1\circ d_0=d_2\circ d_1=0 \]
1-형식의 적분
- 곡선 \(C\)의 매개화가 \(\mathbf{r}(t)=( x(t), y(t), z(t)), \quad a\leq t \leq b\)로 주어지는 경우
- 1-form \(\omega=P\, {d}x + Q\, {d}y+R\,dz\)
- 곡선 C 위에서 1-형식의 적분은 다음과 같이 정의된다
\[\int_{C}\omega=\int_{a}^{b} \left(P(\mathbf{r}(t))\frac{dx}{dt}+Q(\mathbf{r}(t))\frac{dy}{dt}+R(\mathbf{r}(t))\frac{dz}{dt}\right) \,dt\]
- 곡선 C 위에서 1-형식\(\omega=P\, {d}x + Q\, {d}y+R\,dz\)의 적분은 벡터장\(\mathbf{F}=(P,Q,R)\)의 선적분과 같다
\[\int_{C}\mathbf{F}\cdot d\mathbf{r}=\int_{C}\omega\]
- 증명
\[\int_{C}\mathbf{F}\cdot d\mathbf{r}=\int_{a}^{b}\mathbf{F}(\mathbf{r}(t))\cdot \mathbf{r}'(t) \, dt=\int_{a}^{b}\left(P(\mathbf{r}(t))\frac{dx}{dt}+Q(\mathbf{r}(t))\frac{dy}{dt}+R(\mathbf{r}(t))\frac{dz}{dt}\right) \,dt=\int_{C}\omega\] ■
2-형식의 적분
- 3차원의 매개곡면 \(S\), \(\mathbf{r} (u,v)=( x(u,v), y(u,v), z(u,v)),\quad (u,v)\in D\)
- 2-form \(\omega= F_1\, dy \wedge dz + F_2\, dz \wedge dx+F_3\, dx \wedge dy\)
- S 위에서 2-형식의 적분은 다음과 같이 정의된다\[\iint_{S}\omega=\iint_D \left[ F_{1} ( \mathbf{r} (u,v))\frac{\partial(y,z)}{\partial(u,v)} + F_{2} ( \mathbf{r} (u,v))\frac{\partial(z,x)}{\partial(u,v)}F_{3} ( \mathbf{r} (u,v)) \frac{\partial(x,y)}{\partial(u,v)} \right]\, du\, dv\]
- 곡면 S위에서 2-형식 \(\omega= F_1\, dy \wedge dz + F_2\, dz \wedge dx+F_3\, dx \wedge dy\)의 적분은 벡터장\(\mathbf{F}=(F_1,F_2,F_3)\)의 적분과 같다\[\iint_S\ \mathbf{F}\cdot\,d\mathbf{S}=\iint_{S}\omega\]
- 증명
다음을 관찰하자 \[{\partial \mathbf{r} \over \partial u}\times {\partial \mathbf{r} \over \partial v}=\left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v))}\right)\] 다음을 얻는다 \[\iint_S\ \mathbf{F}\cdot\,d\mathbf{S}=\iint_D (F_1,F_2,F_3)\cdot ({\partial \mathbf{x} \over \partial u}\times {\partial \mathbf{x} \over \partial v})\, du\, dv=\iint_{S}\omega\]. ■
응용1. 스토크스 정리
\[\int_S d\omega = \int_{\partial S} \omega\]
관련된 항목들
- 다변수미적분학
- 벡터의 외적(cross product)
- 스토크스정리의 일반화
- 선형대수학
- 미분기하학
수학용어번역
- gradient - 대한수학회 수학용어집
사전형태의 자료
관련논문
- Covariant and Contravariant Vectors
- S. R. Deans, Mathematics Magazine, Vol. 44, No. 1 (Jan., 1971), pp. 5-8
- Differential Forms for Constrained Max-Min Problems: Eliminating Lagrange Multipliers
- Frank Zizza, The College Mathematics Journal, Vol. 29, No. 5 (Nov., 1998), pp. 387-396
- What are Tensors?
- Peter Scherk and Michael Kwizak, The American Mathematical Monthly, Vol. 58, No. 5 (May, 1951), pp. 297-305
- Differential Forms, the Early Days; or the Stories of Deahna's Theorem and of Volterra's Theorem
- Hans Samelson, The American Mathematical Monthly, Vol. 108, No. 6 (Jun. - Jul., 2001), pp. 522-530
관련도서
- Differential Forms and Applications
- Manfredo P. Do Carmo
- From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes
- Ib H. Madsen (Author), Jxrgen Tornehave
- 뒷부분은 학부생이 보기에 다소 어렵지만, 앞부분만으로도 가치가 있음.
리뷰, 에세이, 강의노트
- Lorenzo Sadun, Lecture Notes on Differential Forms, arXiv:1604.07862 [math.AT], April 26 2016, http://arxiv.org/abs/1604.07862
메타데이터
위키데이터
- ID : Q1047080
Spacy 패턴 목록
- [{'LOWER': 'differential'}, {'LEMMA': 'form'}]