"역제곱 벡터장"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
 
+
*  n 차원에서 정의된 벡터장:<math>\mathbf{F}(\mathbf{r})=\frac{\mathbf{r}}{|\mathbf{r}|^3}</math>
 
 
 
 
 
 
<h5>개요</h5>
 
 
 
*  n 차원에서 정의된 벡터장<br><math>\mathbf{F}(\mathbf{r})=\frac{\mathbf{r}}{|\mathbf{r}|^3}</math><br>
 
 
* 중력장과 전자기장에서 중요한 역할
 
* 중력장과 전자기장에서 중요한 역할
* <math>\phi(\mathbf{r})=-\frac{1}{|\mathbf{r}|}</math>  를 포텐셜로 가짐
+
* <math>\phi(\mathbf{r})=-\frac{1}{|\mathbf{r}|}</math> 를 포텐셜로 가짐
 
+
* <math>\nabla\times\mathbf{F}=0</math>
 
+
* <math>\nabla\cdot\mathbf{F}=0</math>
 
 
 
 
 
 
 
 
 
 
<h5>스토크스 정리</h5>
 
  
 
+
  
 
+
  
 
+
==적분의 응용==
  
 
+
* 3차원에서의 벡터장을 생각하자
 +
*  바깥쪽으로 향이 주어진 단위구면 S에 대하여, 다음을 얻는다:<math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi</math>
 +
*  (정리):<math>\nabla\times\mathbf{G}=\mathbf{F}</math> 를 만족시키는 벡터장 <math>\mathbf{G}</math>가 존재하지 않는다 (증명):<math>\nabla\times\mathbf{G}=\mathbf{F}</math> 를 만족시키는 벡터장 <math>\mathbf{G}</math> 를 가정하자.[[스토크스 정리]] 를 적용하면, <math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=\iint_S\ (\nabla\times\mathbf{G})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf G\cdot d\mathbf{r}=0</math> 을 얻는다. 그러나:<math>\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi</math> 이므로 모순. ■
 +
* <math>\nabla\cdot\mathbf{F}=0</math> 이라고 해서 <math>\nabla\times\mathbf{G}=\mathbf{F}</math> 를 만족시키는 벡터장 <math>\mathbf{G}</math>가 반드시 존재하는 것은 아니다
 +
*  obstruction : second homotopy group, second cohomology group
  
<h5>역사</h5>
+
  
 
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
* [[수학사연표 (역사)|수학사연표]]
 
  
 
+
  
 
+
==메모==
  
<h5>메모</h5>
+
 
 
 
 
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
   
 
 
 
 
 
 
<h5>관련된 항목들</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5>매스매티카 파일 및 계산 리소스</h5>
 
 
 
*  
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
  
 
+
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
==관련된 항목들==
  
 
+
* [[각원소 벡터장|각원소벡터장]]
 +
* [[드람 코호몰로지]]
  
 
+
  
 
+
==매스매티카 파일 및 계산 리소스==
  
<h5>관련논문</h5>
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxS1hjenlnX0xNeFU/edit
  
* http://www.jstor.org/action/doBasicSearch?Query=
+
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
+
==사전 형태의 자료==
  
 
+
* http://ko.wikipedia.org/wiki/중력장
  
<h5>관련도서</h5>
+
  
*  도서내검색<br>
+
==관련논문==
** http://books.google.com/books?q=
+
* Buscaino, Brandon, Daniel DeBra, Peter W. Graham, Giorgio Gratta, and Timothy D. Wiser. “Testing Long-Distance Modifications of Gravity to 100 Astronomical Units.” arXiv:1508.06273 [astro-Ph, Physics:gr-Qc, Physics:hep-Ex, Physics:hep-Ph, Physics:hep-Th], August 25, 2015. http://arxiv.org/abs/1508.06273.
** http://book.daum.net/search/contentSearch.do?query=
+
 +
[[분류:미적분학]]

2020년 12월 28일 (월) 02:44 기준 최신판

개요

  • n 차원에서 정의된 벡터장\[\mathbf{F}(\mathbf{r})=\frac{\mathbf{r}}{|\mathbf{r}|^3}\]
  • 중력장과 전자기장에서 중요한 역할
  • \(\phi(\mathbf{r})=-\frac{1}{|\mathbf{r}|}\) 를 포텐셜로 가짐
  • \(\nabla\times\mathbf{F}=0\)
  • \(\nabla\cdot\mathbf{F}=0\)



적분의 응용

  • 3차원에서의 벡터장을 생각하자
  • 바깥쪽으로 향이 주어진 단위구면 S에 대하여, 다음을 얻는다\[\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\]
  • (정리)\[\nabla\times\mathbf{G}=\mathbf{F}\] 를 만족시키는 벡터장 \(\mathbf{G}\)가 존재하지 않는다 (증명)\[\nabla\times\mathbf{G}=\mathbf{F}\] 를 만족시키는 벡터장 \(\mathbf{G}\) 를 가정하자.스토크스 정리 를 적용하면, \(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=\iint_S\ (\nabla\times\mathbf{G})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf G\cdot d\mathbf{r}=0\) 을 얻는다. 그러나\[\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\] 이므로 모순. ■
  • \(\nabla\cdot\mathbf{F}=0\) 이라고 해서 \(\nabla\times\mathbf{G}=\mathbf{F}\) 를 만족시키는 벡터장 \(\mathbf{G}\)가 반드시 존재하는 것은 아니다
  • obstruction : second homotopy group, second cohomology group





메모



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


관련논문

  • Buscaino, Brandon, Daniel DeBra, Peter W. Graham, Giorgio Gratta, and Timothy D. Wiser. “Testing Long-Distance Modifications of Gravity to 100 Astronomical Units.” arXiv:1508.06273 [astro-Ph, Physics:gr-Qc, Physics:hep-Ex, Physics:hep-Ph, Physics:hep-Th], August 25, 2015. http://arxiv.org/abs/1508.06273.