"점화식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
(사용자 3명의 중간 판 24개는 보이지 않습니다)
1번째 줄: 1번째 줄:
* 점화식 : 항 사이의 관계식을 써서 수열을 나타낸 식.
+
==개요==
  
 
+
* 점화식 : 수열의 여러항들이 만족시키는 관계
 +
* 점화식이 만족하는 수열의 일반항을 알아 내는 문제 등
 +
* 보통의 경우 초기항이 주어져야 완전한 답을 낼 수 있다.
  
점화식의 풀이법 : 아래 본문
+
  
 
 
  
Tip) 점화식을 유형별로 분류하여 일반항을 <em class="underline">외우지 '''않는''' 것</em>을 추천함. 어떤 느낌으로 기본적인 점화식으로 변형할 수 있는지만 기억해 두면 됩니다. 익숙해지면 기본적인 점화식으로 변형해서 푸는 것이 더 빨라짐. 제발 부탁이니 수많은 점화식을 다 외우는 뻘짓을 하지 않기를 바랍니다. 그 뻘짓을 하신다면 이 글도 작성자의 뻘짓이 되는 겁니다 ㅠ
+
==기본적인 점화식==
  
 
+
* <math>a_{n+1} - a_n = c</math> : 등차수열
 +
* <math>a_{n+1} / a_n = c</math> : 등비수열
 +
* <math>a_{n+1} - a_n = b_n</math> : [[계차수열]] 참고.
 +
* <math>a_{n+1} / a_n = b_n</math> : [[계차수열|계차수열을 통한 풀이]]에서, <모든 항을 더하>지 않고 <모든 항을 곱하>면 됨.
  
* 점화식을 푸는 것이란 : 점화식이 만족하는 수열의 일반항을 알아 내는 것.<br> 보통의 경우 초기항이 주어져야 완전한 답을 낼 수 있다.<br>  <br>
+
   
*  기본적인 점화식:<br>
 
**  : 등차수열
 
**  : 등비수열
 
**  : 위의 <계차수열> 참고.
 
**  : [[06 여러 가지 수열|계차수열을 통한 풀이]]에서, <모든 항을 더하>지 않고 <모든 항을 곱하>면 됨.
 
*  기본 점화식의 응용<br>
 
** <br>
 
*** 양변에 적당한 상수를 더하면  꼴로 만들 수 있다.
 
*** 일반항이  인 수열은 공비  인 등비수열,
 
*** 적당한 상수  는 어떻게 찾냐고? 생각해 볼 것.
 
***  
 
***   <br> ex) , 초기항 1<br> 양변에 3을 더하면 , 적당한 상수  에 대하여 <br> 초항을 만족시키는  값은 2이므로, <br>
 
**  점화식에 덧셈 기호가 없을 때<br>
 
***  로그를 취하면 도움이 됨. 로그의 밑은 계산이 간단하도록 적절히 선택하기.<br>  <br>
 
***  ex)  : 밑 2 인 로그를 취하면 <br> 이제 에 대한 점화식을 풀면 됨. (양변에 2를 더해서 …)<br>
 
**  점화식이 분수꼴일때<br>
 
***  역수를 취하면 도움이 될 때가 많음. (만능은 아님)<br>
 
*** ex)  : 역수를 취하면 . 이제  에 대한 점화식으로 보고 풀면 됨.
 
**  꼴의 점화식<br>
 
***  일 때<br>
 
**** 잘 정리하면  의 형태로 만들 수 있다. 그러면 계차수열  에 대한 등차수열이라고 생각하고,  을 구한다.
 
**** 계차수열을 알 때 일반항을 구하는 건 할 수 있지?
 
***  일 때 : (교육 과정 외, 이 점화식만은 외우는 것을 권장함. 유도 과정이 너무 길다.)<br>
 
****  결론부터 말하자면,<br>
 
*****  의 두 근을  라 하면,  꼴이며, 초기항 두 개를 아는 경우 상수를 찾을 수 있다.
 
***** 중근  를 가지는 경우에는  꼴이 된다.
 
****  의 두 근  에 대하여,  이다. (근과 계수와의 관계) 그러므로<br> 라고 쓸 수 있다.<br> 이제  으로 쓸 수 있다.  에 대한 등비수열을 풀기.<br> 로도 쓸 수 있다.  에 대한 등비수열을 풀기.<br> 연립해서  을 소거하면 끝! 중근을 가지는 경우에 대한 유도는 독자에게 맡긴다.<br> 이 점화식을  인 점화식에 적용해서 풀지 말라는 법도 없다. 한 근이 무조건 1 이 나와서, (등비수열) + (상수) 꼴의 일반항이 나온다.<br>  <br>
 
**** ex) 피보나치 수열  의 일반항을 구하시오. ()
 
  
 
+
  
*  꼴의 점화식<br>
+
==기본 점화식의 응용==
** 양변을  로 나눈 후,  에 대한 점화식을 푸는 것이 한 방법.  이 등비수열인 경우 효과적이다.
 
**  양변에 적당히  에 대한 식을 더해서 공비  에 대한 등비수열 꼴로 만들 수 있는 경우가 많다.<br>
 
***  이 다항식인 경우, 양변에  과 같은 차수의 다항식을 (계수를 문자로 두고) 더해서, 등비수열 꼴로 만든 후에 계수 비교를 통해 문자를 찾는다.
 
***  ex )  인 경우, 양변에  를 더하면<br><br>
 
***  우변이  인 경우에 등비수열이 되니까,  이므로 . 그러므로<br>. 초기항이 주어진 경우 k 를 찾을 수 있다.<br>
 
*  꼴의 점화식<br>
 
** 양변에 적당히  에 대한 식을 더해서 공비  에 대한 등비수열 꼴로 만들 수 있는 경우가 많다.
 
  
 
+
* <math>a_{n+1} =  ka_n  + c</math>
 +
** 양변에 적당한 상수를 더하면 <math>(a_{n+1}  + p)=  k(a_n  + p)</math> 꼴로 만들 수 있다.
 +
** 일반항이 <math>(a_n  + p)</math> 인 수열은 공비 <math>k</math> 인 등비수열, <math>a_n + p =(a_1 + p) k^{n-1}</math>
 +
**  적당한 상수 <math>p</math> 는 어떻게 찾냐고? 생각해 볼 것. 
 +
**  ex) <math>a_{n+1} = 2a_{n} + 3</math>, 초기항 1 양변에 3을 더하면 <math>(a_{n+1} +3 )= 2( a_{n} + 3)</math>, 적당한 상수 <math>k</math> 에 대하여 <math>a_{n} + 3 = k 2^n</math> 초항을 만족시키는 <math>k</math> 값은 2이므로, <math>a_n = 2^{n+1} - 3</math>
  
 
+
  
* 점화식의 풀이 중에는 미분방정식의 풀이와 유사한 것이 많다.
+
* <math>a_{n+1} = ra_n + b_n</math> 꼴의 점화식
 +
** 양변을 <math>r^{n+1}</math> 로 나눈 후, <math>a_n / r^n</math> 에 대한 점화식을 푸는 것이 한 방법. <math>b_n</math> 이 등비수열인 경우 효과적이다.
 +
**  양변에 적당히 <math>n</math> 에 대한 식을 더해서 공비 <math>r</math> 에 대한 등비수열 꼴로 만들 수 있는 경우가 많다.
 +
*** <math>b_n</math> 이 다항식인 경우, 양변에 <math>b_n</math> 과 같은 차수의 다항식을 (계수를 문자로 두고) 더해서, 등비수열 꼴로 만든 후에 계수 비교를 통해 문자를 찾는다. 
 +
***  ex ) <math>a_{n+1} = 2a_n + 3n + 5</math> 인 경우, 양변에 <math>pn + q</math> 를 더하면:<math>a_{n+1} + pn + q = 2a_n + (3+p)n + (5+q)</math> 우변이 <math>2(a_n+ pn + q)</math> 인 경우에 등비수열이 되니까, <math>3+p = 2p, \quad 5+q=2q</math> 이므로 <math>p=3, \quad q=5</math>. 그러므로:<math>a_n + 3n + 5 = k2^n</math>. 초기항이 주어진 경우 k 를 찾을 수 있다.
 +
 
 +
 +
 
 +
*  점화식에 덧셈 기호가 없을 때
 +
**  로그를 취하면 도움이 됨. 로그의 밑은 계산이 간단하도록 적절히 선택하기. 
 +
**  ex) <math>a_{n+1} = 4a_n^2</math> : 밑 2 인 로그를 취하면 <math>\log a_{n+1} = 2\log a_n + 2</math> 이제 <math>\log a_n = b_n</math>에 대한 점화식을 풀면 됨. (양변에 2를 더해서 …) 
 +
*  점화식이 분수꼴일때
 +
**  역수를 취하면 도움이 될 때가 많음. (만능은 아님) 
 +
**  ex) <math>{a_{n+1}} = \frac{2a_n}{3a_n+1}</math> : 역수를 취하면 <math>\frac{1}{a_{n+1}} = \frac{1}{2} \frac{1}{a_n} + \frac{3}{2}</math>. 이제 <math>b_n = \frac{1}{a_n}</math> 에 대한 점화식으로 보고 풀면 됨. 
 +
*  점화식에 <math>a_n</math> 과 <math>S_n</math> 이 함께 나올 때
 +
** <math>S_n - S_{n-1}=a_n</math><math>(n \ge 2)</math> , <math>S_1 = a_1 </math> 의 관계를 사용하면 <math>a_n</math> 만의 점화식으로 만들 수 있다. 
 +
**  ex) <math> a_n = 2 S_n + 3^n</math> 일 때, <math> a_1 = 2 a_1 + 3</math> 이므로 <math>a_1 = -3</math>:<math>a_{n+1} = 2 S_{n+1} + 3^{n+1}</math> 식과 <math> a_n = 2 S_n + 3^n</math> 식을 빼 주면 <math>a_{n+1} - a_n = 2 a_{n+1} + 2\cdot 3^{n}</math> 이제부터는 알아서 할 것. 부분합과 일반항이 함께 등장하는 점화식에서는 초기 조건에서 실수를 할 가능성이 높으므로, <math>a_1, a_2, a_3</math> 정도는 점화식으로부터 직접 구해 보는 것이 좋을 것이다. 그리고 구한 일반항 <math>a_n</math> 은 <math>(n \ge 2)</math> 에서만 성립하는 식일 가능성도 있다.
 +
 
 +
 +
 
 +
 +
 
 +
==선형점화식==
 +
 
 +
* <math>pa_{n+2} + qa_{n+1} + ra_n = 0</math> 꼴의 점화식
 +
* <math>pa_{n+2} + qa_{n+1} + ra_n = b_n</math> 꼴의 점화식
 +
* [[상수계수 선형점화식]] 항목을 참조
 +
 
 +
 
 +
 
 +
==관련된 항목들==
 +
 
 +
* [[차분방정식(difference equation) 과 유한미적분학 (finite calculus)|차분방정식]]
 +
* [[선형대수학]]
 +
 
 +
 
 +
 
 +
==사전 형태의 자료==
 +
* http://ko.wikipedia.org/wiki/점화식
 +
* http://en.wikipedia.org/wiki/Recurrence_relation
 +
[[분류:고교수학]]
 +
[[분류:수열]]
 +
 
 +
== 메타데이터 ==
 +
 
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q740970 Q740970]
 +
 
 +
== 노트 ==
 +
 
 +
===말뭉치===
 +
# The procedure for finding the terms of a sequence in a recursive manner is called recurrence relation.<ref name="ref_f83c3639">[https://www.tutorialspoint.com/discrete_mathematics/discrete_mathematics_recurrence_relation.htm Discrete Mathematics]</ref>
 +
# We study the theory of linear recurrence relations and their solutions.<ref name="ref_f83c3639" />
 +
# Doing so is called solving a recurrence relation .<ref name="ref_2fd665a6">[http://discrete.openmathbooks.org/dmoi2/sec_recurrence.html Solving Recurrence Relations]</ref>
 +
# Recall that the recurrence relation is a recursive definition without the initial conditions.<ref name="ref_2fd665a6" />
 +
# , 485\ldots\text{.}\) Solution Finding the recurrence relation would be easier if we had some context for the problem (like the Tower of Hanoi, for example).<ref name="ref_2fd665a6" />
 +
# Remember, the recurrence relation tells you how to get from previous terms to future terms.<ref name="ref_2fd665a6" />
 +
# Recurrence relations are used to reduce complicated problems to an iterative process based on simpler versions of the problem.<ref name="ref_9f182e6c">[https://brilliant.org/wiki/recurrence-relations/ Brilliant Math & Science Wiki]</ref>
 +
# Identifying a candidate problem to solve with a recurrence relation: The problem can be reduced to simpler cases.<ref name="ref_9f182e6c" />
 +
# The term difference equation sometimes (and for the purposes of this article) refers to a specific type of recurrence relation.<ref name="ref_eb26bcef">[https://en.wikipedia.org/wiki/Recurrence_relation Recurrence relation]</ref>
 +
# A recurrence relation is an equation that expresses each element of a sequence as a function of the preceding ones.<ref name="ref_eb26bcef" />
 +
# This defines recurrence relation of first order.<ref name="ref_eb26bcef" />
 +
# The recurrence of order two satisfied by the Fibonacci numbers is the archetype of a homogeneous linear recurrence relation with constant coefficients (see below).<ref name="ref_eb26bcef" />
 +
# In this article, we will see how we can solve different types of recurrence relations using different approaches.<ref name="ref_5bf4f82a">[https://www.geeksforgeeks.org/different-types-recurrence-relations-solutions/ Different types of recurrence relations and their solutions]</ref>
 +
# Therefore, we need to convert the recurrence relation into appropriate form before solving.<ref name="ref_5bf4f82a" />
 +
# There are a variety of methods for solving recurrence relations, with various advantages and disadvantages in particular cases.<ref name="ref_d4428fa4">[https://www.whitman.edu/mathematics/cgt_online/book/section03.04.html 3.4 Recurrence Relations]</ref>
 +
# One method that works for some recurrence relations involves generating functions.<ref name="ref_d4428fa4" />
 +
# If we can find an explicit representation for the series for this function, we will have solved the recurrence relation.<ref name="ref_d4428fa4" />
 +
# We can often solve a recurrence relation in a manner analogous to solving a differential equations by multiplying by an integrating factor and then integrating.<ref name="ref_fc851a7a">[https://aofa.cs.princeton.edu/20recurrence/ Recurrence Relations]</ref>
 +
# Wolfram|Alpha can solve various kinds of recurrences, find asymptotic bounds and find recurrence relations satisfied by given sequences.<ref name="ref_30bdd107">[https://www.wolframalpha.com/examples/mathematics/discrete-mathematics/recurrences/ Alpha Examples: Recurrences]</ref>
 +
# This is called a recurrence relation.<ref name="ref_9cc2053b">[http://www.cs.cornell.edu/courses/cs312/2008sp/lectures/lec17.html Lecture 17: Recurrence relations]</ref>
 +
# We somehow need to figure out how often the first versus the second branch of this recurrence relation will be taken.<ref name="ref_9cc2053b" />
 +
# We will first find a recurrence relation for the execution time.<ref name="ref_9cc2053b" />
 +
# These recurrence relations are shown to be closely related to each other.<ref name="ref_08c49046">[https://aip.scitation.org/doi/10.1063/1.1665327 Recurrence Relations for the Multiplicities in the Classical Groups]</ref>
 +
# Racah has obtained a recurrence relation for the ``inner multiplicity'' (multiplicity of weights).<ref name="ref_08c49046" />
 +
# Moreover, Kostant's recurrence relation for the partition function as well as Racah's recurrence relation for the inner multiplicity have been generalized.<ref name="ref_08c49046" />
 +
# In this paper, the recurrence relation for negative moments along with negative factorial moments of some discrete distributions can be obtained.<ref name="ref_d56ddfd9">[https://www.hindawi.com/journals/jps/2015/972035/ Recurrence Relation and Accurate Value on Inverse Moment of Discrete Distributions]</ref>
 +
# Is `D(4)` easier to calculate using the factorial formula or using the recurrence relation?<ref name="ref_37551064">[http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/LRGF.html Recurrence Relations and Generating Functions]</ref>
 +
# Therefore the solution to the recurrence relation will have the form: a n =a2n+b18n.<ref name="ref_831ad1eb">[https://www.sanfoundry.com/discrete-mathematics-questions-answers-recurrence-relation/ Discrete Mathematics Questions and Answers]</ref>
 +
# Therefore the solution to the recurrence relation will have the form: a n =a.6n+b.n.6n.<ref name="ref_831ad1eb" />
 +
# Explanation: Check for the left side of the equation with all the options into the recurrence relation.<ref name="ref_831ad1eb" />
 +
# Together with the initial conditions, the recurrence relation provides a recursive definition for the elements of the sequence.<ref name="ref_4c82613d">[https://link.springer.com/chapter/10.1007/978-1-4757-4878-9_6 Recurrence Relations]</ref>
 +
# The solution techniques for these two classes of recurrence relation are discussed in detail in the Recurrence page.<ref name="ref_686afdb9">[https://web.cs.wpi.edu/~cs2223/d98/notes/recurrence/classify/classify.html cs2223 Classifying Recurrence Relations]</ref>
 +
# We also justified Pascal's Formula as a recurrence relation.<ref name="ref_8ba8c9fd">[https://math.illinoisstate.edu/day/courses/old/305/contentrecursion.html Recurrence Relations]</ref>
 +
# Let's write a recurrence relation for the sum of the elements in column 1 of the triangle.<ref name="ref_8ba8c9fd" />
 +
# Write a recurrence relation H(n) to describe the number of moves required when the left tower has n rings on it.<ref name="ref_8ba8c9fd" />
 +
# Write a recurrence relation b(n) to describe the balance due on the loan after n payments.<ref name="ref_8ba8c9fd" />
 +
# A recurrence relation is an equation which represents a sequence based on some rule.<ref name="ref_a6553953">[https://byjus.com/maths/recurrence-relation/ Recurrence Relation-Definition, Formula and Examples]</ref>
 +
# Once the values of a 0 and a 1 are specified, the whole sequence {a i } i 0 is completely specified by the recurrence relation.<ref name="ref_50edb03b">[https://staff.cdms.westernsydney.edu.au/cgi-bin/cgiwrap/zhuhan/dmath/dm_readall.cgi?page=21 Discrete Mathematics]</ref>
 +
# Observe that the difference of the highest index (n+1) and the lowest index (n-2) is exactly the order 6 of the recurrence relation.<ref name="ref_50edb03b" />
 +
# Since the highest index in the recurrence relation is n+1 while the lowest index is n-2, their difference (n+1)-(n-2)=3 must be the order m, i.e. m=3.<ref name="ref_50edb03b" />
 +
# For each fixed m, these two generating functions share the same denominator, hence the same recurrence relation .<ref name="ref_2e974bde">[https://encyclopedia2.thefreedictionary.com/recurrence+relation recurrence relation]</ref>
 +
# After studying it carefully, it is found that the solutions cannot be given exactly due to the complicated three-term recurrence relation .<ref name="ref_2e974bde" />
 +
# Recurrence relations can also be used to calculate some sequences that are usually computed nonrecursively , e.g. via a closed-form formula .<ref name="ref_7a1d0504">[http://oeis.org/wiki/Recurrence Recurrence]</ref>
 +
# Of course recurrence relations are not limited in application to sequences of integers.<ref name="ref_7a1d0504" />
 +
===소스===
 +
<references />
 +
 
 +
== 메타데이터 ==
 +
 
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q740970 Q740970]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'recurrence'}, {'LEMMA': 'relation'}]
 +
* [{'LOWER': 'recurrent'}, {'LEMMA': 'sequence'}]

2021년 1월 2일 (토) 06:31 기준 최신판

개요

  • 점화식 : 수열의 여러항들이 만족시키는 관계
  • 점화식이 만족하는 수열의 일반항을 알아 내는 문제 등
  • 보통의 경우 초기항이 주어져야 완전한 답을 낼 수 있다.



기본적인 점화식

  • \(a_{n+1} - a_n = c\) : 등차수열
  • \(a_{n+1} / a_n = c\) : 등비수열
  • \(a_{n+1} - a_n = b_n\) : 계차수열 참고.
  • \(a_{n+1} / a_n = b_n\) : 계차수열을 통한 풀이에서, <모든 항을 더하>지 않고 <모든 항을 곱하>면 됨.



기본 점화식의 응용

  • \(a_{n+1} = ka_n + c\)
    • 양변에 적당한 상수를 더하면 \((a_{n+1} + p)= k(a_n + p)\) 꼴로 만들 수 있다.
    • 일반항이 \((a_n + p)\) 인 수열은 공비 \(k\) 인 등비수열, \(a_n + p =(a_1 + p) k^{n-1}\)
    • 적당한 상수 \(p\) 는 어떻게 찾냐고? 생각해 볼 것.
    • ex) \(a_{n+1} = 2a_{n} + 3\), 초기항 1 양변에 3을 더하면 \((a_{n+1} +3 )= 2( a_{n} + 3)\), 적당한 상수 \(k\) 에 대하여 \(a_{n} + 3 = k 2^n\) 초항을 만족시키는 \(k\) 값은 2이므로, \(a_n = 2^{n+1} - 3\)


  • \(a_{n+1} = ra_n + b_n\) 꼴의 점화식
    • 양변을 \(r^{n+1}\) 로 나눈 후, \(a_n / r^n\) 에 대한 점화식을 푸는 것이 한 방법. \(b_n\) 이 등비수열인 경우 효과적이다.
    • 양변에 적당히 \(n\) 에 대한 식을 더해서 공비 \(r\) 에 대한 등비수열 꼴로 만들 수 있는 경우가 많다.
      • \(b_n\) 이 다항식인 경우, 양변에 \(b_n\) 과 같은 차수의 다항식을 (계수를 문자로 두고) 더해서, 등비수열 꼴로 만든 후에 계수 비교를 통해 문자를 찾는다.
      • ex ) \(a_{n+1} = 2a_n + 3n + 5\) 인 경우, 양변에 \(pn + q\) 를 더하면\[a_{n+1} + pn + q = 2a_n + (3+p)n + (5+q)\] 우변이 \(2(a_n+ pn + q)\) 인 경우에 등비수열이 되니까, \(3+p = 2p, \quad 5+q=2q\) 이므로 \(p=3, \quad q=5\). 그러므로\[a_n + 3n + 5 = k2^n\]. 초기항이 주어진 경우 k 를 찾을 수 있다.


  • 점화식에 덧셈 기호가 없을 때
    • 로그를 취하면 도움이 됨. 로그의 밑은 계산이 간단하도록 적절히 선택하기.
    • ex) \(a_{n+1} = 4a_n^2\) : 밑 2 인 로그를 취하면 \(\log a_{n+1} = 2\log a_n + 2\) 이제 \(\log a_n = b_n\)에 대한 점화식을 풀면 됨. (양변에 2를 더해서 …)
  • 점화식이 분수꼴일때
    • 역수를 취하면 도움이 될 때가 많음. (만능은 아님)
    • ex) \({a_{n+1}} = \frac{2a_n}{3a_n+1}\) : 역수를 취하면 \(\frac{1}{a_{n+1}} = \frac{1}{2} \frac{1}{a_n} + \frac{3}{2}\). 이제 \(b_n = \frac{1}{a_n}\) 에 대한 점화식으로 보고 풀면 됨.
  • 점화식에 \(a_n\) 과 \(S_n\) 이 함께 나올 때
    • \(S_n - S_{n-1}=a_n\)\((n \ge 2)\) , \(S_1 = a_1 \) 의 관계를 사용하면 \(a_n\) 만의 점화식으로 만들 수 있다.
    • ex) \( a_n = 2 S_n + 3^n\) 일 때, \( a_1 = 2 a_1 + 3\) 이므로 \(a_1 = -3\)\[a_{n+1} = 2 S_{n+1} + 3^{n+1}\] 식과 \( a_n = 2 S_n + 3^n\) 식을 빼 주면 \(a_{n+1} - a_n = 2 a_{n+1} + 2\cdot 3^{n}\) 이제부터는 알아서 할 것. 부분합과 일반항이 함께 등장하는 점화식에서는 초기 조건에서 실수를 할 가능성이 높으므로, \(a_1, a_2, a_3\) 정도는 점화식으로부터 직접 구해 보는 것이 좋을 것이다. 그리고 구한 일반항 \(a_n\) 은 \((n \ge 2)\) 에서만 성립하는 식일 가능성도 있다.



선형점화식

  • \(pa_{n+2} + qa_{n+1} + ra_n = 0\) 꼴의 점화식
  • \(pa_{n+2} + qa_{n+1} + ra_n = b_n\) 꼴의 점화식
  • 상수계수 선형점화식 항목을 참조


관련된 항목들


사전 형태의 자료

메타데이터

위키데이터

노트

말뭉치

  1. The procedure for finding the terms of a sequence in a recursive manner is called recurrence relation.[1]
  2. We study the theory of linear recurrence relations and their solutions.[1]
  3. Doing so is called solving a recurrence relation .[2]
  4. Recall that the recurrence relation is a recursive definition without the initial conditions.[2]
  5. , 485\ldots\text{.}\) Solution Finding the recurrence relation would be easier if we had some context for the problem (like the Tower of Hanoi, for example).[2]
  6. Remember, the recurrence relation tells you how to get from previous terms to future terms.[2]
  7. Recurrence relations are used to reduce complicated problems to an iterative process based on simpler versions of the problem.[3]
  8. Identifying a candidate problem to solve with a recurrence relation: The problem can be reduced to simpler cases.[3]
  9. The term difference equation sometimes (and for the purposes of this article) refers to a specific type of recurrence relation.[4]
  10. A recurrence relation is an equation that expresses each element of a sequence as a function of the preceding ones.[4]
  11. This defines recurrence relation of first order.[4]
  12. The recurrence of order two satisfied by the Fibonacci numbers is the archetype of a homogeneous linear recurrence relation with constant coefficients (see below).[4]
  13. In this article, we will see how we can solve different types of recurrence relations using different approaches.[5]
  14. Therefore, we need to convert the recurrence relation into appropriate form before solving.[5]
  15. There are a variety of methods for solving recurrence relations, with various advantages and disadvantages in particular cases.[6]
  16. One method that works for some recurrence relations involves generating functions.[6]
  17. If we can find an explicit representation for the series for this function, we will have solved the recurrence relation.[6]
  18. We can often solve a recurrence relation in a manner analogous to solving a differential equations by multiplying by an integrating factor and then integrating.[7]
  19. Wolfram|Alpha can solve various kinds of recurrences, find asymptotic bounds and find recurrence relations satisfied by given sequences.[8]
  20. This is called a recurrence relation.[9]
  21. We somehow need to figure out how often the first versus the second branch of this recurrence relation will be taken.[9]
  22. We will first find a recurrence relation for the execution time.[9]
  23. These recurrence relations are shown to be closely related to each other.[10]
  24. Racah has obtained a recurrence relation for the ``inner multiplicity (multiplicity of weights).[10]
  25. Moreover, Kostant's recurrence relation for the partition function as well as Racah's recurrence relation for the inner multiplicity have been generalized.[10]
  26. In this paper, the recurrence relation for negative moments along with negative factorial moments of some discrete distributions can be obtained.[11]
  27. Is `D(4)` easier to calculate using the factorial formula or using the recurrence relation?[12]
  28. Therefore the solution to the recurrence relation will have the form: a n =a2n+b18n.[13]
  29. Therefore the solution to the recurrence relation will have the form: a n =a.6n+b.n.6n.[13]
  30. Explanation: Check for the left side of the equation with all the options into the recurrence relation.[13]
  31. Together with the initial conditions, the recurrence relation provides a recursive definition for the elements of the sequence.[14]
  32. The solution techniques for these two classes of recurrence relation are discussed in detail in the Recurrence page.[15]
  33. We also justified Pascal's Formula as a recurrence relation.[16]
  34. Let's write a recurrence relation for the sum of the elements in column 1 of the triangle.[16]
  35. Write a recurrence relation H(n) to describe the number of moves required when the left tower has n rings on it.[16]
  36. Write a recurrence relation b(n) to describe the balance due on the loan after n payments.[16]
  37. A recurrence relation is an equation which represents a sequence based on some rule.[17]
  38. Once the values of a 0 and a 1 are specified, the whole sequence {a i } i 0 is completely specified by the recurrence relation.[18]
  39. Observe that the difference of the highest index (n+1) and the lowest index (n-2) is exactly the order 6 of the recurrence relation.[18]
  40. Since the highest index in the recurrence relation is n+1 while the lowest index is n-2, their difference (n+1)-(n-2)=3 must be the order m, i.e. m=3.[18]
  41. For each fixed m, these two generating functions share the same denominator, hence the same recurrence relation .[19]
  42. After studying it carefully, it is found that the solutions cannot be given exactly due to the complicated three-term recurrence relation .[19]
  43. Recurrence relations can also be used to calculate some sequences that are usually computed nonrecursively , e.g. via a closed-form formula .[20]
  44. Of course recurrence relations are not limited in application to sequences of integers.[20]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'recurrence'}, {'LEMMA': 'relation'}]
  • [{'LOWER': 'recurrent'}, {'LEMMA': 'sequence'}]