"데데킨트 제타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터) |
|||
(사용자 2명의 중간 판 95개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | < | + | ==개요== |
+ | * 수체 <math>K</math>에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨 | ||
+ | :<math>\zeta_{K}(s):=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}</math> | ||
+ | * 예 | ||
+ | ** <math>K=\mathbb{Q}</math> 인 경우, [[리만제타함수]]를 얻음 | ||
+ | * 전체 복소평면으로 [[해석적확장(analytic continuation)]] 되며, <math>s=1</math> 에서 simple pole을 가진다 | ||
− | |||
− | + | ===기호=== | |
+ | * <math>K</math> 수체 | ||
+ | * <math>C_K</math> ideal class group | ||
+ | |||
− | + | ==함수방정식== | |
− | <math>K</math> | + | * [[리만제타함수]] 의 함수방정식:<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)</math>:<math>\xi(s) = \xi(1 - s)</math> |
+ | * 리만제타함수는 <math>K=\mathbb{Q}</math> 인 경우, 즉 <math>\zeta(s)=\zeta_{\mathbb{Q}}(s)</math> | ||
+ | * 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립:<math>\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)</math>:<math>\xi_{K}(s) = \xi_{K}(1 - s)</math> | ||
− | |||
− | + | ==디리클레 유수 공식== | |
+ | * <math>s=1</math> 에서의 유수(residue)는 [[디리클레 유수 (class number) 공식]]으로 주어진다 | ||
+ | :<math> \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}</math> | ||
+ | * <math>s=0</math> 에서 order 가 <math>r_1+r_2-1</math> 인 zero를 가지며 다음이 성립한다:<math> \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}</math> | ||
− | + | ||
− | + | ||
− | + | ==부분제타함수== | |
− | |||
− | + | * 각각의 ideal class <math>A\in C_K</math> 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의:<math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math> | |
+ | * 제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨:<math>\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)</math> | ||
+ | * 더 일반적으로 준동형사상 <math>\chi \colon C_K \to \mathbb C^{*}</math>에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음:<math>L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)</math> | ||
− | + | ||
− | + | ||
− | + | ==예== | |
− | + | * [[이차수체의 데데킨트 제타함수]] | |
+ | * [[복소이차수체의 데데킨트 제타함수]] | ||
+ | * [[원분체의 데데킨트 제타함수]] 항목 참조 | ||
− | + | ||
− | + | ||
− | + | == special values == | |
+ | ===클링겐-지겔 (Klingen-Siegel) 정리=== | ||
+ | * [[클링겐-지겔 (Klingen-Siegel) 정리]] | ||
+ | * F : totally real 수체 | ||
+ | * <math>[F: \mathbb{Q}]=n</math> | ||
+ | * <math>m>0</math>일 때, 다음을 만족하는 적당한 유리수 <math>r(m)\in \mathbb{Q}</math>가 존재한다 | ||
+ | :<math>\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}</math> | ||
+ | * http://planetmath.org/SiegelKlingenTheorem.html | ||
− | + | ===Zagier, Bloch, Suslin=== | |
+ | * <math>[K : \mathbb{Q}] = r_1 + 2r_2</math>일 때, | ||
+ | :<math>\zeta_{K}(2)\sim_{\mathbb{Q^{\times}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}</math> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 <math>\mathbb{Q}</math>-basis D는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)]] 함수이며, <math>a\sim_{\mathbb{Q^{\times}}} b</math> 는 <math>a/b\in\mathbb{Q}</math> 를 의미함 | ||
− | + | ||
− | + | ||
− | + | ==역사== | |
− | + | * [[수학사 연표]] | |
− | + | ||
− | + | ||
− | + | ==메모== | |
− | + | * [http://www.umpa.ens-lyon.fr/%7Ebrunault/recherche/parma.pdf http://www.umpa.ens-lyon.fr/~brunault/recherche/parma.pdf] | |
+ | * http://mathoverflow.net/questions/87873/dedekind-zeta-function-behaviour-at-1 | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==관련된 항목들== | ||
+ | * [[디리클레 유수 (class number) 공식]] | ||
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]] | * [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]] | ||
− | |||
− | + | ||
+ | ==계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxcXFHOEFSMHc1bUk/edit | ||
+ | * [http://www.math.mcgill.ca/goren/ZetaValues/zeta.html Tables of Values of Dedekind Zeta Functions] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==사전 형태의 자료== | |
− | |||
− | |||
− | |||
− | |||
* http://en.wikipedia.org/wiki/Dedekind_zeta_function | * http://en.wikipedia.org/wiki/Dedekind_zeta_function | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | |||
− | + | ==리뷰, 에세이, 강의노트== | |
+ | * H. M. Stark, "Galois theory, algebraic number theory and zeta functions" ,in \ From number theory to physics", ed. M. Walschmidt, P. Moussa, J.-M. Luck, C. Itzykson Springer | ||
+ | * H. M. Stark, The analytic theory of algebraic numbers http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183537391 | ||
+ | * [http://www.math.ualberta.ca/%7Emlalin/ Matilde N. Lalin], [http://www.math.ualberta.ca/%7Emlalin/dialogueshow.pdf Hyperbolic volumes and zeta values] An introduction | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==관련논문== | |
+ | * Zagier, Don. ‘Hyperbolic Manifolds and Special Values of Dedekind Zeta-Functions’. Inventiones Mathematicae 83, no. 2 (1 June 1986): 285–301. doi:[http://www.springerlink.com/content/v36272439g3g5006/ 10.1007/BF01388964]. | ||
+ | * D. Zagier, [http://people.mpim-bonn.mpg.de/zagier/files/scanned/PolylogsDedekindZetaAndKTheory/fulltext.pdf Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields] | ||
+ | * Borel, A. ‘Commensurability Classes and Volumes of Hyperbolic 3-Manifolds’. Annali Della Scuola Normale Superiore Di Pisa - Classe Di Scienze 8, no. 1 (1981): 1–33. | ||
− | |||
− | + | ||
− | + | ||
− | + | [[분류:정수론]] | |
− | |||
− | |||
− | + | == 노트 == | |
− | + | ===말뭉치=== | |
+ | # In particular some of these pairs have different class numbers, so the Dedekind zeta function of a number field does not determine its class number.<ref name="ref_ca3cd66b">[https://en.wikipedia.org/wiki/Dedekind_zeta_function Dedekind zeta function]</ref> | ||
+ | # For K K a number field then all special values of the Dedekind zeta function ζ K ( n ) \zeta_K(n) for integer n n happen to be periods (MO comment).<ref name="ref_8e168495">[https://ncatlab.org/nlab/show/Dedekind+zeta+function Dedekind zeta function in nLab]</ref> | ||
+ | # Just like the Riemann zeta function, each Dedekind zeta function possesses a functional equation.<ref name="ref_96a08161">[https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Dedekind_zeta_function.html Dedekind zeta function]</ref> | ||
+ | # The nontrivial zeros of the Dedekind zeta function of any algebraic number eld lie on the critical line: Re(s) = 1/2.<ref name="ref_e51d5cc2">[http://archive.schools.cimpa.info/archivesecoles/20171023105958/PV-lecture2.pdf Introduction to l-functions:]</ref> | ||
+ | # Theorem Let X be a group of Dirichlet characters, K the associated eld, and K (s) the Dedekind zeta function of K .<ref name="ref_e51d5cc2" /> | ||
+ | # From there, we discuss algebraic number elds and introduce the tools needed to dene the Dedekind zeta function.<ref name="ref_d04421dc">[https://math.uchicago.edu/~may/REU2016/REUPapers/Baidoo.pdf Dirichlet l-functions and dedekind ζ-functions]</ref> | ||
+ | # 1 2 FRIMPONG A. BAIDOO necessary for providing context to the Dedekind zeta function.<ref name="ref_d04421dc" /> | ||
+ | # In section 9, we then dene the Dedekind zeta function, describe the ideal class group and then highlight the Dedekind zeta functions role in the class number formula.<ref name="ref_d04421dc" /> | ||
+ | # I was trying to learn a little about the Dedekind zeta function.<ref name="ref_c73b2fb0">[https://math.stackexchange.com/questions/33006/relation-between-the-dedekind-zeta-function-and-quadratic-reciprocity Relation between the Dedekind Zeta Function and Quadratic Reciprocity]</ref> | ||
+ | # For a cubic extension K 3 /ℚ, which is not normal, new results on the behavior of mean values of the Dedekind zeta function of the field K 3 in the critical strip are obtained.<ref name="ref_2c7bf667">[https://link.springer.com/article/10.1007/s10958-008-0126-9 Mean values connected with the Dedekind zeta function]</ref> | ||
+ | # We study analytic aspects of the Dedekind zeta function of a Galois extension.<ref name="ref_2aacc359">[https://core.ac.uk/download/pdf/18451908.pdf Moments of the dedekind zeta function]</ref> | ||
+ | # In the rst part of this thesis we give a formula for the second moment of the Dedekind zeta function of a quadratic eld times an arbitrary Dirichlet polynomial of length T 1/11(cid:15).<ref name="ref_2aacc359" /> | ||
+ | # In the second part, we derive a hybrid Euler-Hadamard product for the Dedekind zeta function of an arbitrary number eld.<ref name="ref_2aacc359" /> | ||
+ | # We then conjecture that the 2kth moment of the Dedekind zeta function of a Galois extension is given by the product of the two.<ref name="ref_2aacc359" /> | ||
+ | ===소스=== | ||
+ | <references /> | ||
− | + | == 메타데이터 == | |
− | + | ===위키데이터=== | |
− | * [ | + | * ID : [https://www.wikidata.org/wiki/Q1182160 Q1182160] |
− | * [ | + | ===Spacy 패턴 목록=== |
− | * [ | + | * [{'LOWER': 'dedekind'}, {'LOWER': 'zeta'}, {'LOWER': 'function'}] |
+ | * [{'LOWER': 'dedekind'}, {'LOWER': "'s"}, {'LOWER': 'zeta'}, {'LOWER': 'function'}] |
2021년 2월 26일 (금) 01:41 기준 최신판
개요
- 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨
\[\zeta_{K}(s):=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}\]
- 예
- \(K=\mathbb{Q}\) 인 경우, 리만제타함수를 얻음
- 전체 복소평면으로 해석적확장(analytic continuation) 되며, \(s=1\) 에서 simple pole을 가진다
기호
- \(K\) 수체
- \(C_K\) ideal class group
함수방정식
- 리만제타함수 의 함수방정식\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)\]\[\xi(s) = \xi(1 - s)\]
- 리만제타함수는 \(K=\mathbb{Q}\) 인 경우, 즉 \(\zeta(s)=\zeta_{\mathbb{Q}}(s)\)
- 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립\[\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)\]\[\xi_{K}(s) = \xi_{K}(1 - s)\]
디리클레 유수 공식
- \(s=1\) 에서의 유수(residue)는 디리클레 유수 (class number) 공식으로 주어진다
\[ \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}\]
- \(s=0\) 에서 order 가 \(r_1+r_2-1\) 인 zero를 가지며 다음이 성립한다\[ \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}\]
부분제타함수
- 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의\[\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\]
- 제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨\[\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\]
- 더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음\[L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\]
예
special values
클링겐-지겔 (Klingen-Siegel) 정리
- 클링겐-지겔 (Klingen-Siegel) 정리
- F : totally real 수체
- \([F: \mathbb{Q}]=n\)
- \(m>0\)일 때, 다음을 만족하는 적당한 유리수 \(r(m)\in \mathbb{Q}\)가 존재한다
\[\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}\]
Zagier, Bloch, Suslin
- \([K : \mathbb{Q}] = r_1 + 2r_2\)일 때,
\[\zeta_{K}(2)\sim_{\mathbb{Q^{\times}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\] 여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 \(\mathbb{Q}\)-basis D는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm) 함수이며, \(a\sim_{\mathbb{Q^{\times}}} b\) 는 \(a/b\in\mathbb{Q}\) 를 의미함
역사
메모
- http://www.umpa.ens-lyon.fr/~brunault/recherche/parma.pdf
- http://mathoverflow.net/questions/87873/dedekind-zeta-function-behaviour-at-1
관련된 항목들
계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxcXFHOEFSMHc1bUk/edit
- Tables of Values of Dedekind Zeta Functions
사전 형태의 자료
리뷰, 에세이, 강의노트
- H. M. Stark, "Galois theory, algebraic number theory and zeta functions" ,in \ From number theory to physics", ed. M. Walschmidt, P. Moussa, J.-M. Luck, C. Itzykson Springer
- H. M. Stark, The analytic theory of algebraic numbers http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183537391
- Matilde N. Lalin, Hyperbolic volumes and zeta values An introduction
관련논문
- Zagier, Don. ‘Hyperbolic Manifolds and Special Values of Dedekind Zeta-Functions’. Inventiones Mathematicae 83, no. 2 (1 June 1986): 285–301. doi:10.1007/BF01388964.
- D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields
- Borel, A. ‘Commensurability Classes and Volumes of Hyperbolic 3-Manifolds’. Annali Della Scuola Normale Superiore Di Pisa - Classe Di Scienze 8, no. 1 (1981): 1–33.
노트
말뭉치
- In particular some of these pairs have different class numbers, so the Dedekind zeta function of a number field does not determine its class number.[1]
- For K K a number field then all special values of the Dedekind zeta function ζ K ( n ) \zeta_K(n) for integer n n happen to be periods (MO comment).[2]
- Just like the Riemann zeta function, each Dedekind zeta function possesses a functional equation.[3]
- The nontrivial zeros of the Dedekind zeta function of any algebraic number eld lie on the critical line: Re(s) = 1/2.[4]
- Theorem Let X be a group of Dirichlet characters, K the associated eld, and K (s) the Dedekind zeta function of K .[4]
- From there, we discuss algebraic number elds and introduce the tools needed to dene the Dedekind zeta function.[5]
- 1 2 FRIMPONG A. BAIDOO necessary for providing context to the Dedekind zeta function.[5]
- In section 9, we then dene the Dedekind zeta function, describe the ideal class group and then highlight the Dedekind zeta functions role in the class number formula.[5]
- I was trying to learn a little about the Dedekind zeta function.[6]
- For a cubic extension K 3 /ℚ, which is not normal, new results on the behavior of mean values of the Dedekind zeta function of the field K 3 in the critical strip are obtained.[7]
- We study analytic aspects of the Dedekind zeta function of a Galois extension.[8]
- In the rst part of this thesis we give a formula for the second moment of the Dedekind zeta function of a quadratic eld times an arbitrary Dirichlet polynomial of length T 1/11(cid:15).[8]
- In the second part, we derive a hybrid Euler-Hadamard product for the Dedekind zeta function of an arbitrary number eld.[8]
- We then conjecture that the 2kth moment of the Dedekind zeta function of a Galois extension is given by the product of the two.[8]
소스
- ↑ Dedekind zeta function
- ↑ Dedekind zeta function in nLab
- ↑ Dedekind zeta function
- ↑ 4.0 4.1 Introduction to l-functions:
- ↑ 5.0 5.1 5.2 Dirichlet l-functions and dedekind ζ-functions
- ↑ Relation between the Dedekind Zeta Function and Quadratic Reciprocity
- ↑ Mean values connected with the Dedekind zeta function
- ↑ 8.0 8.1 8.2 8.3 Moments of the dedekind zeta function
메타데이터
위키데이터
- ID : Q1182160
Spacy 패턴 목록
- [{'LOWER': 'dedekind'}, {'LOWER': 'zeta'}, {'LOWER': 'function'}]
- [{'LOWER': 'dedekind'}, {'LOWER': "'s"}, {'LOWER': 'zeta'}, {'LOWER': 'function'}]