"로그 사인 적분 (log sine integrals)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 19개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[로그 사인 적분 (log sine integrals)]]<br>
+
* 정의 :<math>\operatorname{Ls}_{a+b,a}(\theta):=-\int_{0}^{\theta}x^a\log^{b-1}|2\sin \frac{x}{2}|\,dx</math> :<math>\operatorname{Ls}_{n}(\theta):=\operatorname{Ls}_{n,0}(\theta)=-\int_{0}^{\theta}\log^{n-1}(2\sin \frac{x}{2})\,dx</math>
 +
* 다음과 같은 적분에서 등장한다
 +
:<math>
 +
\int_{0}^{1-e^{i\theta}}\log^{n-1}z\frac{dz}{1-z}=-i\int_{0}^{\theta}(\frac{i}{2}(x-\pi)+\log|2\sin \frac{x}{2}|)^{n-1}\,dx
 +
</math>
  
 
+
* [[로바체프스키 함수|클라우센 함수]]의 일반화로 볼 수 있다 :<math>\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}</math>
  
 
+
  
<h5>개요</h5>
+
==로그사인 정적분==
  
정의<br><math>\operatorname{Ls}_{a+b,a}(\theta):=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx</math><br><math>\operatorname{Ls}_{n}(\theta):=\operatorname{Ls}_{n,0}(\theta)=-\int_{0}^{\theta}\log^{n-1}}(2\sin \frac{x}{2})\,dx</math><br>
+
정적분 값의 계산 문제 :<math>\operatorname{Ls}_{n}(\pi)=-\int_{0}^{\pi}\log^{n-1}(2\sin \frac{x}{2})\,dx</math>
 +
*  지수생성함수
 +
:<math>I(x):=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\sum_{n=0}^{\infty}\int_{0}^{\pi}\frac{x^n}{n!}\log^n(2\sin\frac{1}{2}\theta)d\theta=-\sum_{n=0}^{\infty}\frac{x^n}{n!}\operatorname{Ls}_{n+1}(\pi)</math>
 +
*  정적분의 점화식:<math>\operatorname{Ls}_{m+2}(\pi)=(-1)^{m}m![\pi(1-2^{-m})\zeta(m+1)-\sum_{k=2}^{m-1}(-1)^{k}\frac{1-2^{k-m}}{k!}\zeta(m-k+1)\operatorname{Ls}_{k+1}(\pi)</math>
 +
*  이 정적분은 <math>\ln 2</math>와 <math>\zeta(n), n\geq 2</math> 의 다항식으로 표현할 수 있다'''[Bowman1947]'''
 +
*  다음 정리로부터 이러한 결과들을 이해할 수 있다
  
* [[로바체프스키 함수|클라우센 함수]]의 일반화로 볼 수 있다<br><math>\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}</math><br>
+
 +
===지수생성함수===
 +
;정리 '''[Lewin1958]'''
 +
:<math>I(x)=\frac{\pi\Gamma(1+x)}{(\Gamma(1+\frac{1}{2}x))^2}</math>
 +
:<math>\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k</math>
  
 
+
  
<math>\int_{0}^{1-e^{i\theta}}\log^{n-1}z\frac{dz}{1-z}=-i\int_{0}^{\theta}(\frac{i}{2}(x-\pi)+\log|2\sin \frac{x}{2}|)^{n-1}\,dx </math><math>=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx</math>
+
;증명
  
 
+
[[오일러 베타적분(베타함수)|오일러 베타적분]] 의 결과를 이용하자.
 +
:<math>\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}</math>
  
 
+
:<math>I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}</math>
  
<h5>로그사인 정적분</h5>
+
여기서 [[감마함수]]의 곱셈공식
 +
:<math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math> 을 이용하면, 우변을 정리하여 원하는 식을 얻는다.
  
*  정적분 값의 계산 문제<br><math>\operatorname{Ls}_{n}(\pi)=-\int_{0}^{\pi}\log^{n-1}}(2\sin \frac{x}{2})\,dx</math><br>
+
한편,
*  지수생성함수<br><math>I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\sum_{n=0}^{\infty}\int_{0}^{\pi}\frac{x^n}{n!}\log^n(2\sin\frac{1}{2}\theta)d\theta=-\sum_{n=0}^{\infty}\frac{x^n}{n!}\operatorname{Ls}_{n+1}(\pi)</math><br>
+
:<math>\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k</math> 를 구하려면, [[로그감마 함수]]의 테일러전개를 이용하면 된다
 +
:<math>\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k.</math>
  
 
+
  
* 정적분의 점화식<br><math>\operatorname{Ls}_{m+2}(\pi)=(-1)^{m}m![\pi(1-2^{-m})\zeta(m+1)-\sum_{k=2}^{m-1}(-1)^{k}\frac{1-2^{k-m}}{k!}\zeta(m-k+1)\operatorname{Ls}_{k+1}(\pi)</math><br>
+
* <math>I(x)</math> 에 대하여 다음이 성립한다
*  이 정적분은 <math>\ln 2</math>와 <math>\zeta(n), n\geq 2</math> 의 다항식으로 표현할 수 있다'''[Bowman1947]'''<br>
+
:<math>\frac{1}{\pi}\int_{0}^{\pi}(2 \sin \frac{1}{2}\theta)^{x}\,d\theta=\frac{1}{\pi}\int_{0}^{\pi}(2 \cos \frac{1}{2}\theta)^{x}\,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x)\Gamma(1+\frac{1}{2}x)}</math>
*  다음 정리로부터 이러한 결과들을 이해할 수 있다<br>
 
  
 
+
좀 더 일반적으로,
 +
:<math>\frac{1}{\pi}\int_{0}^{\pi}(2 \cos \frac{1}{2}\theta)^{x}\cos y\theta \,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x+y)\Gamma(1+\frac{1}{2}x-y)}</math> 가 성립한다. '''[Borwein1995]'''
  
(정리) '''[Lewin1958]'''
+
  
<math>I(x)=\frac{\pi\Gamma(1+x)}{(\Gamma(1+\frac{1}{2}x))^2}</math>
+
  
<math>\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k</math>
+
==special values==
 
 
 
 
 
 
(증명)
 
 
 
[[오일러 베타적분(베타함수)|오일러 베타적분]] 의 결과를 이용하자. 
 
 
 
<math>\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}</math>
 
 
 
 <math>I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}</math>
 
 
 
여기서 [[감마함수]]의 곱셈공식 <math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math> 을 이용하면, 우변을 정리하여 원하는 식을 얻는다. 
 
 
 
한편, 
 
 
 
<math>\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k</math> 를 구하려면, [[로그감마 함수]]의 테일러전개를 이용하면 된다.  <math>\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k</math> ■
 
 
 
 
 
 
 
*노트*
 
 
 
<math>\frac{1}{\pi}\int_{0}^{\pi}2^{x}\sin^{x}\frac{1}{2}\theta\,d\theta=\frac{1}{\pi}\int_{0}^{\pi}2^{x}\cos^{x}\frac{1}{2}\theta\,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x)\Gamma(1+\frac{1}{2}x)}</math>
 
 
 
좀 더 일반적으로
 
 
 
<math>\frac{1}{\pi}\int_{0}^{\pi}2^{x}\cos^{x}\frac{1}{2}\theta\cos y\theta \,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x+y)\Gamma(1+\frac{1}{2}x-y)}</math> 가 성립한다. '''[Borwein1995]'''
 
 
 
 
 
 
 
 
 
 
 
<h5>special values</h5>
 
  
 
<math>\int_{0}^{\frac{\pi}{4}}\ln (\sin t)dt =-\frac{\pi}{4}\ln 2-\frac{G}{2}</math>
 
<math>\int_{0}^{\frac{\pi}{4}}\ln (\sin t)dt =-\frac{\pi}{4}\ln 2-\frac{G}{2}</math>
78번째 줄: 62번째 줄:
 
<math>\int_{0}^{\frac{\pi}{4}}t\ln (\sin t)dt =\frac{35}{128}\zeta(3)-\frac{\pi G}{8}-\frac{\pi^2}{32}\log 2</math>
 
<math>\int_{0}^{\frac{\pi}{4}}t\ln (\sin t)dt =\frac{35}{128}\zeta(3)-\frac{\pi G}{8}-\frac{\pi^2}{32}\log 2</math>
  
(여기서 G는 [[카탈란 상수]])
+
(여기서 G는 [[카탈란 상수]])
  
 
<math>\int_{0}^{\pi/3}\log^2(2\sin \frac{x}{2})\,dx=\frac{7\pi^3}{108}</math>
 
<math>\int_{0}^{\pi/3}\log^2(2\sin \frac{x}{2})\,dx=\frac{7\pi^3}{108}</math>
106번째 줄: 90번째 줄:
 
<math>\int_{0}^{\pi}\log^6(2\sin \frac{x}{2})\,dx=\frac{45\pi}{2}\zeta^2(3)+\frac{275\pi^7}{1344}</math>
 
<math>\int_{0}^{\pi}\log^6(2\sin \frac{x}{2})\,dx=\frac{45\pi}{2}\zeta^2(3)+\frac{275\pi^7}{1344}</math>
  
 
+
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">메모</h5>
 
 
 
* [[중심이항계수(central binomial coefficient)]]<br><math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math><br>
 
* http://cjackal.tistory.com/10[http://cjackal.tistory.com/109 9]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실</h5>
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사</h5>
 
  
 
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=log+sine+integral
+
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
  
 
+
==메모==
  
 
+
* [[중심이항계수(central binomial coefficient)]]:<math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math>
 +
* http://cjackal.tistory.com/109
 +
* [http://www.wolframalpha.com/input/?i=integrate+%28log+%282sin%28x/2%29%29%29%5E2+dx+from+0+to+pi/3 http://www.wolframalpha.com/input/?i=integrate+(log+(2sin(x/2)))^2+dx+from+0+to+pi/3]
 +
* http://mathworld.wolfram.com/RamanujanLog-TrigonometricIntegrals.html
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모</h5>
 
  
* [http://www.wolframalpha.com/input/?i=integrate+%28log+%282sin%28x/2%29%29%29%5E2+dx+from+0+to+pi/3 http://www.wolframalpha.com/input/?i=integrate+(log+(2sin(x/2)))^2+dx+from+0+to+pi/3]<br>
+
==역사==
*  http://arxiv.org/abs/hep-ph/0411100v2<br>
+
* [[수학사 연표]]
* http://mathworld.wolfram.com/RamanujanLog-TrigonometricIntegrals.html<br>
 
  
 
 
  
 
+
==관련된 항목들==
  
 
+
* [[로그 탄젠트 적분(log tangent integral)]]
 +
* [[다이로그 함수(dilogarithm)|다이로그 함수(dilogarithm )]]
 +
* [[폴리로그 함수(polylogarithm)]]
 +
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]
 +
* [[정수에서의 리만제타함수의 값]]
 +
* [[중심이항계수(central binomial coefficient)]]
 +
* [[오일러 베타적분(베타함수)|오일러 베타적분]]
 +
* [[로그 탄젠트 적분(log tangent integral)|로그 탄젠트 적분]]
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들</h5>
+
  
* [[로그 탄젠트 적분(log tangent integral)]]<br>
+
* [[다이로그 함수(dilogarithm)|다이로그 함수(dilogarithm )]]<br>
+
==계산 리소스==
* [[폴리로그 함수(polylogarithm)]]<br>
+
* [http://arminstraub.com/mathematics/lstoli-a-mathematica-package-for-evaluating-log-sine-integrals LsToLi: A Mathematica package for evaluating log-sine integrals]
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]<br>
+
** http://arminstraub.com/pub/log-sine-integrals
* [[정수에서의 리만제타함수의 값]][[폴리로그 함수(polylogarithm)|]]<br>
+
* Kalmykov, M. Yu, and A. Sheplyakov. 2004. “LSJK - a C++ Library for Arbitrary-precision Numeric Evaluation of the Generalized Log-sine Functions.” arXiv:hep-ph/0411100 (November 7). doi:10.1016/j.cpc.2005.04.013. http://arxiv.org/abs/hep-ph/0411100.
* [[중심이항계수(central binomial coefficient)]]<br>
 
* [[오일러 베타적분(베타함수)|오일러 베타적분]][[로그 탄젠트 적분(log tangent integral)|]]<br>
 
  
 
+
==관련논문==
  
 
+
* Borwein, David, Jonathan M Borwein, Armin Straub, and James Wan. 2011. Log-sine evaluations of Mahler measures, II. 1103.3035 (March 15). http://arxiv.org/abs/1103.3035.  
 
+
* Borwein, Jonathan M, and Armin Straub. 2011. Log-sine evaluations of Mahler measures. 1103.3893 (March 20). http://arxiv.org/abs/1103.3893.  
 
+
* Mark W. Coffey [http://dx.doi.org/10.1016/S0377-0427%2803%2900438-2 On some log-cosine integrals related to ζ(3), ζ(4), and ζ(6)], 2003
 
+
* [http://www.cs.cmu.edu/%7Eadamchik/articles/Srivastava/ch_sr.pdf Multiple Gamma and Related Functions]
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5>
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료</h5>
 
 
 
*   <br>
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문</h5>
 
 
 
* Borwein, David, Jonathan M Borwein, Armin Straub, and James Wan. 2011. Log-sine evaluations of Mahler measures, II. 1103.3035 (March 15). http://arxiv.org/abs/1103.3035. 
 
* Borwein, Jonathan M, and Armin Straub. 2011. Log-sine evaluations of Mahler measures. 1103.3893 (March 20). http://arxiv.org/abs/1103.3893. 
 
 
 
 
 
 
 
* [http://dx.doi.org/10.1016/S0377-0427%2803%2900438-2 On some log-cosine integrals related to ζ(3), ζ(4), and ζ(6)]<br>
 
** Mark W. Coffey, 2003
 
* [http://www.cs.cmu.edu/%7Eadamchik/articles/Srivastava/ch_sr.pdf Multiple Gamma and Related Functions]<br>
 
 
** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
 
** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
* '''[Borwein1995]'''[http://www.jstor.org/stable/2160718 On an Intriguing Integral and Some Series Related to ζ(4)]<br>
+
* '''[Borwein1995]'''[http://www.jstor.org/stable/2160718 On an Intriguing Integral and Some Series Related to ζ(4)]
** David Borwein and Jonathan M. Borwein, Proceedings of the American Mathematical Society, Vol. 123, No. 4 (Apr., 1995), pp. 1191-1198
+
** David Borwein and Jonathan M. Borwein, Proceedings of the American Mathematical Society, Vol. 123, No. 4 (Apr., 1995), pp. 1191-1198
*  Some wonderful formulas ... an introduction to polylogarithms<br>
+
*  Some wonderful formulas ... an introduction to polylogarithms
** A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286
+
** A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286
* [http://dx.doi.org/10.1007/BF01935325 On the value of a logarithmic-trigonometric integral]<br>
+
* [http://dx.doi.org/10.1007/BF01935325 On the value of a logarithmic-trigonometric integral]
** K. S. Kölbig, 1970
+
** K. S. Kölbig, 1970
* '''[Lewin1958]'''[http://www.jstor.org/stable/3609410 On the Evaluation of log-sine Integrals]<br>
+
* '''[Lewin1958]''' L. Lewin [http://www.jstor.org/stable/3609410 On the Evaluation of log-sine Integrals] The Mathematical Gazette, Vol. 42, No. 340 (May, 1958), pp. 125-128
**  L. Lewin The Mathematical Gazette, Vol. 42, No. 340 (May, 1958), pp. 125-128<br>
+
* '''[Bowman1947]'''[http://dx.doi.org/10.1112/jlms/s1-22.3.172 Note on the Integral], J. London Math. Soc. 1947 s1-22: 172-173
* '''[Bowman1947]'''[http://dx.doi.org/10.1112/jlms/s1-22.3.172 Note on the Integral] <br>
 
**  F. Bowman, J. London Math. Soc. 1947 s1-22: 172-173<br>
 
* http://www.jstor.org/stable/3609410
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/10.1007/BF01935325
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">블로그</h5>
 
  
* 구글 블로그 검색<br>
+
   
** http://blogsearch.google.com/blogsearch?q=
+
[[분류:적분]]
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2020년 11월 12일 (목) 06:47 기준 최신판

개요

  • 정의 \[\operatorname{Ls}_{a+b,a}(\theta):=-\int_{0}^{\theta}x^a\log^{b-1}|2\sin \frac{x}{2}|\,dx\] \[\operatorname{Ls}_{n}(\theta):=\operatorname{Ls}_{n,0}(\theta)=-\int_{0}^{\theta}\log^{n-1}(2\sin \frac{x}{2})\,dx\]
  • 다음과 같은 적분에서 등장한다

\[ \int_{0}^{1-e^{i\theta}}\log^{n-1}z\frac{dz}{1-z}=-i\int_{0}^{\theta}(\frac{i}{2}(x-\pi)+\log|2\sin \frac{x}{2}|)^{n-1}\,dx \]

  • 클라우센 함수의 일반화로 볼 수 있다 \[\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}\]


로그사인 정적분

  • 정적분 값의 계산 문제 \[\operatorname{Ls}_{n}(\pi)=-\int_{0}^{\pi}\log^{n-1}(2\sin \frac{x}{2})\,dx\]
  • 지수생성함수

\[I(x):=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\sum_{n=0}^{\infty}\int_{0}^{\pi}\frac{x^n}{n!}\log^n(2\sin\frac{1}{2}\theta)d\theta=-\sum_{n=0}^{\infty}\frac{x^n}{n!}\operatorname{Ls}_{n+1}(\pi)\]

  • 정적분의 점화식\[\operatorname{Ls}_{m+2}(\pi)=(-1)^{m}m![\pi(1-2^{-m})\zeta(m+1)-\sum_{k=2}^{m-1}(-1)^{k}\frac{1-2^{k-m}}{k!}\zeta(m-k+1)\operatorname{Ls}_{k+1}(\pi)\]
  • 이 정적분은 \(\ln 2\)와 \(\zeta(n), n\geq 2\) 의 다항식으로 표현할 수 있다[Bowman1947]
  • 다음 정리로부터 이러한 결과들을 이해할 수 있다


지수생성함수

정리 [Lewin1958]

\[I(x)=\frac{\pi\Gamma(1+x)}{(\Gamma(1+\frac{1}{2}x))^2}\] \[\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k\]


증명

오일러 베타적분 의 결과를 이용하자. \[\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\]

\[I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}\]

여기서 감마함수의 곱셈공식 \[2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\] 을 이용하면, 우변을 정리하여 원하는 식을 얻는다.

한편, \[\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k\] 를 구하려면, 로그감마 함수의 테일러전개를 이용하면 된다 \[\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k.\] ■


  • \(I(x)\) 에 대하여 다음이 성립한다

\[\frac{1}{\pi}\int_{0}^{\pi}(2 \sin \frac{1}{2}\theta)^{x}\,d\theta=\frac{1}{\pi}\int_{0}^{\pi}(2 \cos \frac{1}{2}\theta)^{x}\,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x)\Gamma(1+\frac{1}{2}x)}\]

좀 더 일반적으로, \[\frac{1}{\pi}\int_{0}^{\pi}(2 \cos \frac{1}{2}\theta)^{x}\cos y\theta \,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x+y)\Gamma(1+\frac{1}{2}x-y)}\] 가 성립한다. [Borwein1995]



special values

\(\int_{0}^{\frac{\pi}{4}}\ln (\sin t)dt =-\frac{\pi}{4}\ln 2-\frac{G}{2}\)

\(\int_{0}^{\frac{\pi}{4}}\ln (\cos t)dt =-\frac{\pi}{4}\ln 2+\frac{G}{2}\)

\(\int_{0}^{\frac{\pi}{4}}t\ln (\sin t)dt =\frac{35}{128}\zeta(3)-\frac{\pi G}{8}-\frac{\pi^2}{32}\log 2\)

(여기서 G는 카탈란 상수)

\(\int_{0}^{\pi/3}\log^2(2\sin \frac{x}{2})\,dx=\frac{7\pi^3}{108}\)

\(\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}\)

\(\int_{0}^{\pi}\log(2\sin \frac{x}{2})\,dx=0\)

\(\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\log 2}{2}\)

\(\int_{0}^{\pi/2}x\log(\sin x)\,dx=\frac{7}{16}\zeta(3)-\frac{\pi^2}{8}\log 2\)

\(\int_{0}^{\frac{\pi}{2}}x^2 \ln (\sin x)dx=-\frac{\pi^3}{24}\ln 2+\frac{3}{16} \zeta(3)\)

\(\int_{0}^{\pi/2}\log^2(\sin x)\,dx=\frac{\pi}{2}(\log 2)^2+\frac{\pi^3}{24}\)

\(\int_{0}^{\pi}\log^2(2\sin \frac{x}{2})\,dx=\frac{\pi^3}{12}\)

\(\int_{0}^{\pi}x^2\log^2(2\cos \frac{x}{2})\,dx=\frac{11\pi^5}{180}\)

\(\int_{0}^{\pi}\log^3(2\sin \frac{x}{2})\,dx=-\frac{3\pi}{2}\zeta(3)\)

\(\int_{0}^{\pi}\log^4(2\sin \frac{x}{2})\,dx=\frac{19\pi^5}{240}\)

\(\int_{0}^{\pi}\log^5(2\sin \frac{x}{2})\,dx=-\frac{45\pi}{2}\zeta(5)-\frac{5\pi^3}{4}\zeta(3)\)

\(\int_{0}^{\pi}\log^6(2\sin \frac{x}{2})\,dx=\frac{45\pi}{2}\zeta^2(3)+\frac{275\pi^7}{1344}\)




메모


역사


관련된 항목들



계산 리소스

관련논문