"방정식과 대칭성 : 치환군"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “\{\operatorname{id}, \sigma}\}” 문자열을 “\{\operatorname{id}, \sigma\}” 문자열로)
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
245번째 줄: 245번째 줄:
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
 
 
 

2013년 1월 14일 (월) 15:42 판

이 항목의 수학노트 원문주소

 

 

개요

  • 군이란 어떤 불변성을 가진 대상에 대한 ‘변화’들의 모임을 말한다
  • 군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐지만 해가 만족시키는 방정식은 변하지 않는다.
  • 이것이 바로 ‘변화속의불변’ – 대칭성이다.
  • \(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma\}\)의 경우 \(\sigma\)는 복소수체의 실수체 \(\mathbb{R}\)의 원소를 변화시키지 않음.
    • \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음
  • 갈루아 이론5차방정식과 근의 공식 문제를 풀기 위해 방정식의 해가 가지는 대칭성에 대한 연구로부터 시작되었다

 

 

켤레복소수의 예

실계수 방정식 \(x^2+1=0\) 에 대하여 생각해보자. 이 방정식은 실수 내에서는 해를 가지지 않으며, 해를 얻기 위해서는 허수라는 것을 실수에 집어넣어 실수를 복소수로 확장하는 작업이 필요하다. (유식한 말을 약간 사용하자면, 복소수체 \(\mathbb{C}\) 는 실수체 \(\mathbb{R}\)의 체확장이라 한다)  이 방정식은 복소수 내에서 두 개의 해 \(\{i,-i\}\)를 가진다.

 

이제 켤레복소수에 대해 생각해볼 차례이다. 복소수 \(\alpha+\beta i\) (\(\alpha, \beta\)는 실수) 에 대하여 복소수 \(\alpha-\beta i\)를 켤레복소수라 한다. \(\alpha+\beta i\)의 켤레복소수를 취하여 \(\alpha-\beta i\)를 얻는데, 여기서 또한번 켤레복소수를 취하면 다시 \(\alpha+\beta i\) 를 얻게 된다. 복소수를 켤레복소수로 보내는 함수를  \(\sigma(z)=\bar{z}\) 라고 표현한다면, \(\sigma^2(z)=\bar{\bar{z}}=z\)가 된다. 이를 간략하게 쓰자면 \(\sigma^2=\operatorname{id}\) , 즉 켤레복소수를 취하는 것을 함수로 보아 자기자신과 합성을 하면 항등함수를 얻게 된다는 것이다.

 

여기서 원소 두 개짜리 군 \(\{\operatorname{id}, \sigma\}\) 을 얻는다. 이를 유식하게는\(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma\}\) 라고 하지만, 차차 알아가도록 하자.

 

지금 방정식 \(x^2+1=0\)과 그 해집합 \(\{i,-i\}\) 그리고 복소수를 복소수로 보내주는 두 함수, 항등함수와 켤레복소수 함수로 만들어진 군 \(\{\operatorname{id}, \sigma\}\)가 있다.

 

켤레복소수에 의하면,  \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 서로 위치를 바꾸는 것을 볼 수 있다.

 

군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐다. 그러나 그 둘이 만족시키는 방정식 \(x^2+1=0\) 은 변하지 않는다. 이것이 바로 ‘변화속의불변’ – 대칭성이다. 한 방정식의 모든 해는 서로 변해도, 그들은 모두 여전히 같은 방정식을 만족시킨다.

 

 

 

일반화

(정리)

체 \(F\)에 대하여, \(a_n , a_{n-1} , \cdots, a_0 \in F\) 라 하자.

\(\alpha \in \bar{F}\)가 기약방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이면, 방정식의 해\(\alpha = \alpha_1,\cdots.\alpha_n\)를 모두 추가하여 만든 체확장 \(K=F(\alpha_1,\cdots,\alpha_n)\)의 갈루아군 \(\text{Gal}(K/F)\) 의 원소 \(\sigma\)에 대하여 \(\sigma(\alpha)\) 도 같은 방정식의 해가 된다.

 

(증명)

\(\alpha \)는 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이므로, \(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0 = 0\).

\(\sigma\in\text{Gal}(K/F)\)에 대하여 \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)= \sigma(0)=0\) 이다.

그런데 \(\sigma\in\text{Gal}(K/F)\) 는 사칙연산을 보존하며 체 \(F\)의 원소들을 변화시키지 않으므로, \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)=a_n \sigma(\alpha)^n + a_{n-1} \sigma(\alpha)^{n-1} + a_{n-2} \sigma(\alpha)^{n-2} + \cdots + a_1 \sigma(\alpha) + a_0 = 0\)

을 만족시킨다.

따라서 \(\sigma(\alpha)\)도 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해가 된다. ■

 

 

방정식의 해를 요리조리 결합시키는 과정을 체계적으로 생각하는데서, 바로 군론의 아이디어가 싹트게 된다. 오늘은 그에 대한 이야기이다.

 

\(z^4+z^3+z^2+z^1+1=0\)의 네 해는 다음과 같다는 것을 지난 번에 보였다.

 

\(\alpha_1=\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)=\zeta\)

 

\(\alpha_2=\frac{1}{4} \left(-1-\sqrt{5}+i \sqrt{10-2 \sqrt{5}}\right)=\zeta^2\)

 

\(\alpha_3=\frac{1}{4} \left(-1-\sqrt{5}-i \sqrt{10-2 \sqrt{5}}\right)=\zeta^3\)

 

\(\alpha_4=\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)=\zeta^4\)

 

여기서 \(\zeta=e^{2\pi i \over 5}=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}\).

 

 

이제 치환이라는 말을 정의하자. 치환이란 우리의 경우에는 네 개의 원소로 구성된 집합 \(\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}\)에 정의되는 전단사함수를 말한다. \(\alpha_1\)을 \(\alpha_3\)으로 보내고, \(\alpha_3\)을 \(\alpha_1\)로 보내고, \(\alpha_2\)와 \(\alpha_4\)는 그대로 두는 치환을 간단히 다음과 같이 쓰자.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}\)

 

방정식의 해의 치환군은 해의 위치를 서로 바꿔주는 치환 중에서, 해들이 만족시키는 방정식의 대수적관계 (더 정확히는 유리계수다항식) 를 보존하는 것들로 정의된다.

 

가령 위의 네 해는 \(\alpha_1\alpha_4=\alpha_2\alpha_3=1\), \(\alpha_1^2\alpha_3=1\)와 같은 대수적관계들을 만족시킨다. 그러면 치환군의 원소는 어떤 것들이 있을지 생각해볼 수 있겠다.

 

\(\tau=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{pmatrix}\) 는 치환군의 원소가 될 수 없는데, \(\alpha_1\alpha_4=1\) 임에 반하여, \(\tau(\alpha_1)\tau(\alpha_4)=\alpha_2\alpha_4\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 임을 기억하자)

 

 

\(\alpha_1\alpha_4=\alpha_2\alpha_3=1\)라는 조건으로부터, \(\{1,4\}\)와 \(\{2,3\}\) 이 쌍으로 움직여야 한다는 것을 알 수 있다. 따라서 다음과 같은 치환들만이 치환군의 원소 후보가 될 수 있다.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

 

그러나 여기서 \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\)와 같은 경우는 치환군의 원소가 될 수 없는데,  \(\alpha_1^2\alpha_3=1\) 임에 반하여, \(\tau(\alpha_1)^2\tau(\alpha_3)=\alpha_1^2\alpha_2\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 이므로)

 

 

결국엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

 

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\)는 함수이므로, 이 녀석의 제곱이란 함수의 합성으로 이해할 수 있다.

 

\(\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) 로 두면,\(\sigma^2= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\),  \(\sigma^3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\), \(\sigma^4=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\) 가 되어, 모든 원소가 \(\sigma\)로부터 얻어지게 된다.

 

즉 친숙한 군 {차렷, 좌향좌, 우향우, 뒤로돌아}와 비교하자면, \(\sigma\)는 좌향좌 또는 우향우와 같은 역할을 방정식의 해에 대하여 하고 있다. 크기가 4인 순환군이 된다.

 

 

 

\(x^4 - 10x^2 + 1=0\)의 네 해는 다음과 같이 주어진다.

 

\(\alpha_1 = \sqrt{2} + \sqrt{3}\)

 

\(\alpha_2 = \sqrt{2} - \sqrt{3}\)

 

\(\alpha_3 = -\sqrt{2} + \sqrt{3}\)

 

\(\alpha_4= -\sqrt{2} - \sqrt{3}\)

 

 

 

이 경우엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.

 

\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)

 

그런데

 

\(x=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\)로 쓰면, \(x^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

 

\(y=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\)로 쓰면, \(y^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

 

\(z=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)로 쓰면, \(z^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)

 

로 모두 제곱하면 항등원이 되어버리므로, 이 군은 절대로 {차렷, 좌향좌, 우향우, 뒤로돌아}와 같은 구조를 가질 수 없음을 알게 된다.

 

 

 

방정식 \(z^4+z^3+z^2+z^1+1=0\)와 \(x^4 - 10x^2 + 1=0\) 는 뭔가 질적으로 다르다는 것을 이 치환군은 말해주고 있다.

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

 

 

 

관련도서