"체론(field theory)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/1933680">01 다양한 수학의 주제들</a>페이지로 이동하였습니다.)
30번째 줄: 30번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">체확장</h5>
 
<h5 style="margin: 0px; line-height: 2em;">체확장</h5>
  
*  체 K가 체 F를 포함할 때, 즉 <math>F\subset K</math>일때, K를 F의 체확장이라 <br>
+
*  체 K가 체 F를 포함할 때, 즉 <math>F\subset K</math>일때, K를 F의 체확장이라 한다<br>
  
 
 
 
 
38번째 줄: 38번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">거듭제곱근 체확장(radical extension)</h5>
 
<h5 style="margin: 0px; line-height: 2em;">거듭제곱근 체확장(radical extension)</h5>
  
기본체 <math>F=F_0</math><br>
+
주어진 체에서 시작하여 거듭제곱근들을 넣어 만들 수 있는 체확장의 종류<br>
*  다음조건을 만족시키는 <math>F</math>의 체확장 <math>K=F(a_1,a_2,\cdots,a_r)</math>를 거듭제곱근 체확장이라 한다<br> 정수 <math>n_1,\cdots,n_r</math>이 존재하여, <math>a_1^{n_1}\in F</math> 이고 <math>1<i\leq r</math>에 대하여 <math>a_i^{n_i} \in F(a_1,a_2,\cdots,a_{i-1})</math><br>
 
*  풀어쓰면 다음과 같다<br> 원소 <math>b_1\in F</math>와 자연수 <math>n_1</math>에 대하여, 거듭제곱근 <math>a_1=\sqrt[n_1]b_1</math> 를 추가하여 얻어지는 체확장 <math>F_1=F(a_1)=F(\sqrt[n_1]b_1)</math><br> 원소 <math>b_2\in F_1</math>와 자연수 <math>n_2</math>에 대하여, 거듭제곱근 <math>a_2=\sqrt[n_2]b_2</math> 를 추가하여 얻어지는 체확장 <math>F_2=F_1(b_2)=F_1(\sqrt[n_2]a_2)</math><br> 이러한 체확장을 유한번 반복하여 얻어지는  <math>F=F_0</math>의 체확장을 거듭제곱근 체확장이라 한다<br>
 
*  예<br><math>\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2})(\sqrt{\sqrt{2}})=\mathbb{Q}(\sqrt[4]2)</math><br><math>\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2}, \sqrt{3})</math><br>
 
 
* [[정다각형의 작도]], [[5차방정식과 근의 공식]] 에서 중요하게 사용되는 개념이다<br>
 
* [[정다각형의 작도]], [[5차방정식과 근의 공식]] 에서 중요하게 사용되는 개념이다<br>
* 거듭제곱근 체확장(radical extension)<br>
+
* [[search?q=%EA%B1%B0%EB%93%AD%EC%A0%9C%EA%B3%B1%EA%B7%BC%20%EC%B2%B4%ED%99%95%EC%9E%A5%28radical%20extension%29&parent id=3716391|거듭제곱근 체확장(radical extension)]] 항목에서 자세히 다룸<br>
  
 
 
 
 

2010년 2월 18일 (목) 17:13 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 사칙연산을 할 수 있는 대수적 구조
  • 실수, 복소수, 유한체, p-adic 체, function field 등
  • 5차방정식과 근의 공식을 이해하기 위한 기본적인 개념틀

 

 

 

체(field)의 정의
  • 체 \(<\mathbb{F}, +, \cdot, 0,1>\)
  • 집합 F와 더하기(+), 곱하기(·) 연산이 정의되어 있으며, 0과 1이라는 원소가 있어, 다음과 같은 조건을 만족시킴
    \((\mathbb{F}, +)\)는 아벨군이며 0은 항등원이다. 즉 덧셈에 대한 아벨군을 이룬다.
    \((\mathbb{F}^{*}, \cdot)\)는 아벨군이며 1은 항등원이다. 여기서 \(\mathbb{F}^{*}\)은 0을 제외한 원소들의 집합.
    더하기와 곱하기는 분배법칙을 만족시킨다. 즉, 모든 원소 \(a,b,c\in \mathbb{F}\)에 대하여 \(a \cdot (b+c) = (a \cdot b) + (a \cdot c)\) 이 성립한다.

 

 

체확장
  • 체 K가 체 F를 포함할 때, 즉 \(F\subset K\)일때, K를 F의 체확장이라 한다

 

 

거듭제곱근 체확장(radical extension)

 

 

 

다항식과 갈루아체확장
  • (기약)다항식으로부터 얻어지는 해를 모두 추가하여 주어진 체를 확장시킬 수 있음
  • 유리수체 \(\mathbb{Q}\)에서 정의된 다항식 \(x^3-2=0\)
  • 해는 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\) 세 개가 존재
  • 유리수체 \(\mathbb{Q}\)에 \(\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\)를 집어넣으면 유리수체의 확장 \(K=\mathbb{Q}(\omega, \sqrt[3]{2})\) 를 얻음
  • 이 때, 체 \(K\)는 유리수체 \(\mathbb{Q}\)위에 정의된 벡터공간이 되며, 벡터공간으로서의 차원은 \([K : \mathbb{Q}]=6\)이 됨

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련논문

 

 

관련도서

 

 

 

블로그