"푸리에 급수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
  
 <br>
+
주어진 함수의 삼각함수를 이용한 급수표현<br>
 +
* [[열방정식]]을 푸는 과정에서 푸리에가 발견<br>
  
 
 
 
 
17번째 줄: 18번째 줄:
 
 
 
 
  
 +
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5>
 +
 +
* <math>2\pi</math>를 주기로 가지는 함수 <math>f</math><br>
 
*  푸리에 계수의 정의<br><math>a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0</math><br><math>b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1</math><br>
 
*  푸리에 계수의 정의<br><math>a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0</math><br><math>b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1</math><br>
 +
*  푸리에 급수<br><math>\frac{a_0}{2} + \sum_{n=1}^\infty \, [a_n \cos(nx) + b_n \sin(nx)]</math><br>
 +
 +
 
  
 
 
 
 
37번째 줄: 44번째 줄:
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]<br><math>0 \leq \theta \leq 2\pi</math> 일때,<math>Cl_2(\theta)=\sum_{n=1}^\infty \frac{1}{n^2}\sin n\theta</math><br>
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]]<br><math>0 \leq \theta \leq 2\pi</math> 일때,<math>Cl_2(\theta)=\sum_{n=1}^\infty \frac{1}{n^2}\sin n\theta</math><br>
  
* [[로그감마 함수]]<br><math>\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx</math><br>
+
* [[로그감마 함수]]<br><math>\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{\log n}{n}\sin 2\pi nx</math><br>
  
 
 
 
 

2010년 5월 27일 (목) 05:52 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 주어진 함수의 삼각함수를 이용한 급수표현
  • 열방정식을 푸는 과정에서 푸리에가 발견

 

 

 

정의
  • \(2\pi\)를 주기로 가지는 함수 \(f\)
  • 푸리에 계수의 정의
    \(a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0\)
    \(b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1\)
  • 푸리에 급수
    \(\frac{a_0}{2} + \sum_{n=1}^\infty \, [a_n \cos(nx) + b_n \sin(nx)]\)

 

 

 

\(-\pi < x < \pi\) 일 때, \(x=2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sin(nx)\)

 

\(0 < \theta \leq \pi\) 일때, \(\frac{\pi -\theta}{2}=\sum_{n=1}^{\infty}\frac{1}{n}\sin n\theta\)

 

 

  • 로그감마 함수
    \(\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{\log n}{n}\sin 2\pi nx\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그