"푸리에 급수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “네이버(.*)]” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
||
21번째 줄: | 21번째 줄: | ||
* <math>2\pi</math>를 주기로 가지는 함수 <math>f</math><br> | * <math>2\pi</math>를 주기로 가지는 함수 <math>f</math><br> | ||
− | * 푸리에 계수의 정의 | + | * 푸리에 계수의 정의:<math>a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0</math>:<math>b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1</math><br> |
− | * 푸리에 급수 | + | * 푸리에 급수:<math>f(x)\sim \frac{a_0}{2} + \sum_{n=1}^\infty \, [a_n \cos(nx) + b_n \sin(nx)]</math><br> |
32번째 줄: | 32번째 줄: | ||
==예1== | ==예1== | ||
− | * <math>f(x)=x</math>, <math>-\pi < x < \pi</math> | + | * <math>f(x)=x</math>, <math>-\pi < x < \pi</math>:<math>f(x)\sim2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sin(nx)</math><br> |
− | * <math>f(x)=\frac{\pi-x}{2}</math>,<math>0 < x \leq \pi</math> | + | * <math>f(x)=\frac{\pi-x}{2}</math>,<math>0 < x \leq \pi</math>:<math>f(x) \sim \sum_{n=1}^{\infty}\frac{1}{n}\sin n x</math><br> |
− | * <math>f(x)=x^2</math>, <math>-\pi < x < \pi</math> | + | * <math>f(x)=x^2</math>, <math>-\pi < x < \pi</math>:<math>f(x)\sim \frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^2} \cos(nx)</math><br> |
44번째 줄: | 44번째 줄: | ||
==예2== | ==예2== | ||
− | * [[로바체프스키 함수|로바체프스키와 클라우센 함수]] | + | * [[로바체프스키 함수|로바체프스키와 클라우센 함수]]:<math>0 \leq \theta \leq 2\pi</math> 일때,<math>Cl_2(\theta)=\sum_{n=1}^\infty \frac{1}{n^2}\sin n\theta</math><br> |
− | * [[로그감마 함수]] | + | * [[로그감마 함수]]:<math>\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{\log n}{n}\sin 2\pi nx</math><br> |
2013년 1월 12일 (토) 10:49 판
이 항목의 스프링노트 원문주소
개요
- 주어진 함수의 삼각함수를 이용한 급수표현
- 열방정식을 푸는 과정에서 푸리에가 발견
정의
- \(2\pi\)를 주기로 가지는 함수 \(f\)
- 푸리에 계수의 정의\[a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0\]\[b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1\]
- 푸리에 급수\[f(x)\sim \frac{a_0}{2} + \sum_{n=1}^\infty \, [a_n \cos(nx) + b_n \sin(nx)]\]
예1
- \(f(x)=x\), \(-\pi < x < \pi\)\[f(x)\sim2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sin(nx)\]
- \(f(x)=\frac{\pi-x}{2}\),\(0 < x \leq \pi\)\[f(x) \sim \sum_{n=1}^{\infty}\frac{1}{n}\sin n x\]
- \(f(x)=x^2\), \(-\pi < x < \pi\)\[f(x)\sim \frac{\pi^2}{3}+4\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^2} \cos(nx)\]
예2
- 로바체프스키와 클라우센 함수\[0 \leq \theta \leq 2\pi\] 일때,\(Cl_2(\theta)=\sum_{n=1}^\infty \frac{1}{n^2}\sin n\theta\)
- 로그감마 함수\[\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{\log n}{n}\sin 2\pi nx\]
역사
메모
\(\hat{f}(n) = \frac{1}{2\pi}\int_{-\pi}^\pi f(x) e^{inx}\, dx\)
\(f(x)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{inx}\)
관련된 항목들
수학용어번역
사전 형태의 자료
-
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Fourier_series
- http://www.wolframalpha.com/input/?i=fourierseries+of+x
- http://www.wolframalpha.com/input/?i=fourier+sine+series+of+x
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문